当前位置:   article > 正文

使用 llama.cpp 在本地部署 AI 大模型的一次尝试_llamacpp prompt -n -e

llamacpp prompt -n -e

对于刚刚落下帷幕的2023年,人们曾经给予其高度评价——AIGC元年。随着 ChatGPT 的火爆出圈,大语言模型、AI 生成内容、多模态、提示词、量化…等等名词开始相继频频出现在人们的视野当中,而在这场足以引发第四次工业革命的技术浪潮里,人们对于人工智能的态度,正从一开始的惊喜慢慢地变成担忧。因为 AI 在生成文字、代码、图像、音频和视频等方面的能力越来越强大,强大到需要 “冷门歌手” 孙燕姿亲自发文回应,强大到连山姆·奥特曼都被 OpenAI 解雇。在经历过 OpenAI 套壳、New Bing、GitHub Copilot 以及各式 AI 应用、各类大语言模型的持续轰炸后,我们终于迎来了人工智能“安卓时刻”,即除了 ChatGPT、Gemini 等专有模型以外,我们现在有更多的开源大模型可以选择。可这难免会让我们感到困惑,人工智能的尽头到底是什么呢?2013年的时候,我以为未来属于提示词工程(Prompt Engineering),可后来好像是 RAG 以及 GPTs 更受欢迎?

从哪里开始

在经历过早期调用 OpenAI API 各种障碍后,我觉得大语言模型,最终还是需要回归到私有化部署这条路上来。毕竟,连最近新上市的手机都开始内置大语言模型了,我先后在手机上体验了有大语言模型加持的小爱同学,以及抖音的豆包,不能说体验有多好,可终归是聊胜于无。目前,整个人工智能领域大致可以分为三个层次,即:算力、模型和应用。其中,算力,本质上就是芯片,对大模型来说特指高性能显卡;模型,现在在 Hugging Face 可以找到各种开源的模型,即便可以节省训练模型的成本,可对这些模型的微调和改进依然是 “最后一公里” 的痛点;应用,目前 GPTs 极大地推动了各类 AI 应用的落地,而像 Poe 这类聚合式的 AI 应用功能要更强大一点。最终,我决定先在 CPU 环境下利用 llama.cpp 部署一个 AI 大模型,等打通上下游关节后,再考虑使用 GPU 环境实现最终落地。从头开始训练一个模型是不大现实的,可如果通过 LangChain 这类框架接入本地知识库还是有希望的。

编译 llama.cpp

llama.cpp 是一个纯 C/C++ 实现的 LLaMA 模型推理工具,由于其具有极高的性能,因此,它可以同时在 GPU 和 CPU 环境下运行,这给了像博主这种寻常百姓可操作的空间。在 Meta 半开源了其 LLaMA 模型以后,斯坦福大学发布了其基于 LLaMA-7B 模型微调而来的模型 Alpaca,在开源社区的积极响应下,在 Hugging Face 上面相继衍生出了更多的基于 LLaMA 模型的模型,这意味着这些由 LLaMA 衍生而来的模型,都可以交给 llama.cpp 这个项目来进行推理。对硬件要求低、可供选择的模型多,这是博主选择 llama.cpp 的主要原因。在这篇文章里,博主使用的是一台搭配 i7-1360P 处理器、32G 内存的笔记本,按照 LLaMA 的性能要求,运行 GGML 格式的 7B 模型至少需要 13G 内存,而运行 GGML 格式的 13B 模型至少需要 24G 内存,大家可以根据自身配置选择合适的模型,个人建议选择 7B 即可,因为 13B 运行时间一长以后还是会感到吃力,哎

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/553282
推荐阅读
相关标签