当前位置:   article > 正文

LLM 大模型为什么会有上下文 tokens 的限制?

大模型 上下文长度限制

▼最近直播超级多,预约保你有收获

今晚直播:《构建企业专用大模型实战

 1

大模型为什么会有 tokens 限制?

人是以字数来计算文本长度,大语言模型 (LLM)是以 token 数来计算长度的。LLM 使用 token 把一个句子分解成若干部分。

token 可以是一个单词、一个单词中的一个部分、甚至是一个字符,具体取决于它使用的标记化方法 (tokenization method)。比如:句子 "ChatGPT is great !" 可能会被分割成 ["Chat", "G", "PT", " is", " great", "!"] 这 6 个 tokens。

c975e58de92d60d3292d8427153c9a8f.png

上下文 token 长度为什么会有限制?有以下3方面的相互制约:文本长短、注意力、算力,这3方面不可能同时满足,也就是存在“不可能三角”,如下图所示:

ef646ea46ce72e7881ac227468e23be5.png

也就是说:上下文文本越长,越难聚焦充分注意力(Transformer 网络的注意力机制),难以完整理解;注意力限制下,短文本无法完整解读复杂信息;处理长文本需要大量算力,从而提高了成本。

根本原因还是大模型的 Transformer 网络结构的自注意力机制,自注意力机制的计算量会随着上下文长度的增加呈平方级增长,比如:上下文增加32倍时,计算量实际会增长1000倍。这就构成了“不可能三角”中的第一组矛盾:上下文文本长短与注意力。

另外在大模型实际部署时,企业端根本无法提供很大的算力支持,这也就倒逼厂商无论是扩大模型参数还是文本长度,都要紧守算力一关。但现阶段要想突破更长的文本技术,就不得不消耗更多的算力,于是就形成了文本长短与算力之间的第二组矛盾

 2

大模型如何突破 tokens 限制?

突破大模型的 tokens 限制主要采用以下 3种方法。

方法一:采用 LongLoRA 微调技术重建自注意力计算方式

通过 LongLoRA 微调技术将长文本划分为不同的组,在每个组里进行计算,而不用计算每个词之间的关系,从而降低计算量,提供生成速度。

2acc15aea4f193046d1ee9d2513c5fb8.png

方法二:采用 RAG 技术给大模型开“外挂”

将长文本切分为多个短文本处理,大模型在处理长文本时,会在向量数据库中对短文本进行检索,以此来获得多个短文本回答构成的长文本。每次只加载所需要的短文本片段,从而避开了模型无法一次读入整个长文本的问题。

e4123ff401cb1992204a241027c7c6aa.png

方法三:提升大模型支持的上下文长度

对大模型的上下文长度持续优化,比如:以 OpenLLaMA-3B 和 OpenLLaMA-7B 模型为起点,在其基础上进行微调,产生了LONGLLaMA 新模型。该模型很容易外推到更长的序列,在 8K tokens上训练的模型,很容易外推到 256K 窗口大小。

56fdc5deb3e6c28b98d872687153f833.png

在技术侧这3种方法到底如何实现?今晚 20 点,我会开一场直播详细给大家剖析如何构建长下文的企业专用大模型。

直播精彩看点

1、参数高效微调(PEFT) 之 LoRA 技术剖析 

2、基于 LoRA 微调构建长上下文专用大模型过程详解 

3、微调 Llama-2 模型根据自然语言生成 SQL 案例实践

请同学点击下方按钮预约直播,咱们今晚20点直播见!

 3

关于《LLM 大模型技术知识图谱和学习路线

最近很多同学在后台留言:“玄姐,大模型技术的知识图谱有没?”、“大模型技术有学习路线吗?”

我们倾心整理了大模型技术的知识图谱《最全大模型技术知识图谱》和学习路线《最佳大模型技术学习路线》快去领取吧!

LLM 大模型技术体系的确是相对比较复杂的,如何构建一条清晰的学习路径对每一个 IT 同学都是非常重要的,我们梳理了下 LLM 大模型的知识图谱,主要包括12项核心技能:大模型内核架构、大模型开发API、开发框架、向量数据库、AI 编程、AI Agent、缓存、算力、RAG、大模型微调、大模型预训练、LLMOps 等12项核心技能。

3116f7c5dd79593cbd90d5ca83399f7e.png

为了帮助每一个程序员掌握以上12项核心技能,我们准备了一系列免费直播干货扫码一键免费全部预约领取

55d785320dab99a63bec0f14d3213252.png

END

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/557241
推荐阅读
相关标签
  

闽ICP备14008679号