本文来自网易云社区
数据清洗是将重复、多余的数据筛选清除,将缺失的数据补充完整,将错误的数据纠正或者删除,最后整理成为我们可以进一步加工、使用的数据。
所谓的数据清洗,也就是ETL处理,包含抽取Extract、转换Transform、加载load这三大法宝。在大数据挖掘过程中,面对的至少是G级别的数据量,包括用户基本数据、行为数据、交易数据、资金流数据以及第三方的数据等等。选择正确的方式来清洗特征数据极为重要,除了让你能够事半功倍,还至少能够保证在方案上是可行的。
数据清洗的一般步骤:分析数据、缺失值处理、异常值处理、去重处理、噪音数据处理。在大数据生态圈,有很多来源的数据ETL工具,但是对于公司内部来说,稳定性、安全性和成本都是必须考虑的。
对于数据值缺失的处理,通常使用的方法有下面几种:
1、删除缺失值
当样本数很多的时候,并且出现缺失值的样本在整个的样本的比例相对较小,这种情况下,我们可以使用最简单有效的方法处理缺失值的情况。那就是将出现有缺失值的样本直接丢弃。这是一种很常用的策略。
2、均值填补法
根据缺失值的属性相关系数最大的那个属性把数据分成几个组,然后分别计算每个组的均值,把这些均值放入到缺失的数值里面就可以了。
3、热卡填补法
对于一个包含缺失值的变量,热卡填充法的做法是:在数据库中找到一个与它最相似的对象,然后用这个相似对象的值来进行