当前位置:   article > 正文

Pytorch-07 完整训练测试过程

Pytorch-07 完整训练测试过程

要在PyTorch中使用GPU进行数据集的加载、模型的训练和最后模型的测试,需要将数据集和模型都移动到GPU上,并确保在训练和测试过程中都在GPU上进行计算。以下是一个完整的示例代码,展示了如何在PyTorch中使用GPU进行端到端的训练和测试:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 准备训练和测试数据,并将其移动到GPU
train_input = torch.randn(100, 10).to(device)
train_target = torch.randn(100, 1).to(device)
test_input = torch.randn(20, 10).to(device)
test_target = torch.randn(20, 1).to(device)

# 创建数据集和数据加载器
train_dataset = TensorDataset(train_input, train_target)
train_loader = DataLoader(train_dataset, batch_size=10, shuffle=True)

# 定义一个简单的神经网络模型,并将其移动到GPU
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(5, 1)

    def forward(self, x):
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        return x

model = SimpleModel().to(device)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)

# 训练模型
model.train()
for epoch in range(100):
    for input_data, target_data in train_loader:
        optimizer.zero_grad()
        output = model(input_data)
        loss = criterion(output, target_data)
        loss.backward()
        optimizer.step()

# 测试模型
model.eval()
with torch.no_grad():
    test_output = model(test_input)
    test_loss = criterion(test_output, test_target)
    print(f'Test Loss: {test_loss.item()}')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

在这个示例中,我们首先检查GPU是否可用,并将训练和测试数据移动到GPU上。然后,我们创建了数据集和数据加载器,定义了神经网络模型,并将模型移动到GPU。在训练过程中,我们使用数据加载器加载数据进行训练;在测试过程中,我们使用model.eval()将模型切换为评估模式,并使用torch.no_grad()上下文管理器关闭梯度计算,以避免在测试过程中更新模型参数。最后,我们计算了模型在测试集上的损失。整个训练和测试过程都在GPU上进行,以加速计算和提高效率。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/626102
推荐阅读
相关标签
  

闽ICP备14008679号