当前位置:   article > 正文

蚁群算法实现 - 全局路径规划算法_蚁群算法路径规划详细步骤

蚁群算法路径规划详细步骤

参考博客:
(1)【人工智能】蚁群算法(密恐勿入)
(2)计算智能——蚁群算法
(3)蚁群算法(实例帮助理解)
(4)【数之道 04】解决最优路径问题的妙招-蚁群ACO算法
(5)路径规划与轨迹跟踪系列算法学习_第2讲_蚁群算法

1 蚁群算法讲解

基本原理:模拟蚂蚁觅食行为的启发式算法,广泛应用于优化问题的求解。将一群蚂蚁放在问题的解空间上,让它们通过信息素的传递和挥发,逐渐找到最优解
模拟蚂蚁在简单地形,寻找食物
① 在蚁群算法的初始阶段,我们在地图上不放置任何食物,因为蚂蚁需要在没有任何信息素的情况下开始摸索前进。一开始,蚂蚁们在洞外随机移动,试图找到食物的位置。每只蚂蚁的速度相同,它们会按照随机的方向前进,直到遇到障碍物或者到达了边界。此时,它们会再次随机选择一个方向,并继续前进。这个过程会持续进行
在这里插入图片描述
② 当蚂蚁们找到了食物后,它们会将一些信息素沿着它们的路径释放出来,并且在回到蚁巢的路上也会释放信息素。
在这里插入图片描述
蚁群之间的规则:

蚂蚁发现食物并将其带回巢穴时,通常会遵循已经标记的路径返回,即原路返回。在返回过程中,蚂蚁会释放归巢素和信息素,这些化学物质可以吸引其他蚂蚁跟随它的路径前往食物源。如果路径上有较多的归巢素或信息素,则越来越多的蚂蚁将会选择这条路径前往食物。

③ 当蚂蚁们回到巢穴时,它们会在原来的路径上释放更多信息素,增强这条路径的吸引力,并且尝试着寻找更短的路径。蚂蚁们会在路径上选择合适的地方停下来,释放信息素,然后返回巢穴。这个过程将持续进行,直到蚂蚁们找到了最优路径。信息素会随着时间的推移而逐渐挥发。

随着时间的推移,蚂蚁终会找到最优路径。有点类似快速搜索随机树算法。
在这里插入图片描述
蚁群算法在复杂地形的应用:
在这里插入图片描述

蚁群优化算法最初用于解决TSP问题,经过多年的发展,已经陆续渗透到其他领域中,比如图着色问题、大规模集成电路设计、通讯网络中的路由问题以及负载平衡问题、车辆调度问题等。蚁群算法在若干领域己获得成功的应用,其中最成功的是在组合优化问题中的应用

如果读者还是不理解,请看下面这个例子:
在这里插入图片描述

假设1号蚂蚁和2号蚂蚁速度相同,释放的信息素浓度相同,▲ACB为等腰三角形。当1号蚂蚁从A走到C的时候,2号蚂蚁已经走到了食物B。此时AC和AB信息素浓度相同。然后2号蚂蚁找到食物返回,1号蚂蚁从C走到B。此时AB信息素浓度是BC的两倍,当1号蚂蚁想返回到A点,不会沿BCA返回,而是选择信息素浓度高的BA路径返回。这样持续下去,AB路径上的信息素浓度会越来越高,后面的蚂蚁都会选择AB路径来获取食物,从而找到了获取食物的最短路径。

2 算法设计

蚂蚁觅食行为本质可以概括为以下几点:
① 路径概率选择机制信息素踪迹越浓的路径,被选中的概率越大
② 信息素更新机制路径越短,路径上的信息素踪迹增长得越快
③ 协同工作机制蚂蚁个体通过信息素进行信息交流

当蚁群算法陷入局部最优解时,可以使用以下方法进行优化:

(1)增加蚂蚁的数量。增加蚂蚁的数量可以增加搜索的广度,从而有更大的可能性找到全局最优解。
(2)调整信息素挥发速度。通过适当降低信息素挥发速度,可以增加信息素在路径上的积累,从而增加蚂蚁选择该路径的概率。
(3)引入随机因素。在蚁群算法中引入随机因素,可以使蚂蚁更具有探索性,从而有可能跳出局部最优解,进而找到全局最优解。
(4)改变参数。通过改变蚁群算法中的参数,如信息素浓度、信息素挥发速度、启发式因子等,可以使算法更加灵活,从而更容易找到全局最优解。
(5)使用局部搜索算法。在蚁群算法的基础上,可以结合局部搜索算法,如模拟退火算法、遗传算法等,来寻找全局最优解。

算法步骤:

(1)初始化(各个参数): 在计算之初需要对相关的参数进行初始化,如蚂蚁数量m、信息素因子α、启发函数因子β、信息素挥发因子ρ、信息素常数Q、最大迭代次数t等等。
(2)构建解空间: 将各个蚂蚁随机地放置于不同的出发点,对每个蚂蚁k(k=1,2,……,m),计算其下一个待访问的城市,直到所有蚂蚁访问完所有的城市。
(3)更新信息素: 计算各个蚂蚁经过的路径长度L,记录当前迭代次数中的最优解(最短路径)。同时,对各个城市连接路径上的信息素浓度进行更新。
(4)判断是否终止: 若迭代次数小于最大迭代次数则迭代次数加一,清空蚂蚁经过路径的记录表,并返回步骤二;否则终止计算,输出最优解。

在这里插入图片描述

1 初始化参数的设置
参考博客:蚁群算法(实例帮助理解)
在这里插入图片描述
2 构建路径(解空间),将各个蚂蚁随机地置于不同的出发点,为每只蚂蚁确定当前候选道路集:
蚂蚁选择城市的概率公式如下:
P i j k = { τ i j α ( t ) ∗ η i j β ( t ) ∑ s ∈  allowed k τ i j α ( t ) ∗ η i j β ( t ) j ∈  allowed k 0  其他  P_{i j}^{k}=\left\{

τijα(t)ηijβ(t)s allowedkτijα(t)ηijβ(t)j allowedk0 其他 
\right. Pijk= s allowedkτijα(t)ηijβ(t)τijα(t)ηijβ(t)0j allowedk 其他 

  • i,j为起点和终点,k表示第k只蚂蚁
  • η i j ( t ) = 1 / d i j \eta_{i j}(t)=1 / d_{i j} ηij(t)=1/dij为启发函数用于表示蚂蚁从i到j的能见度,其大小是两点i,j路径距离的倒数
  • τ i j ( t ) \tau_{ij}(t) τij(t)为时间t由i到j的信息素浓度
  • a l l o w e d k allowed_k allowedk表示蚂蚁k尚未访问过节点的集合
  • α \alpha α为信息素重要程度因子,值越大,信息素在转移中的作用越大
  • β \beta β为启发函数重要程度因子,其值越大,表示启发函数在转移中的作用越大,即蚂蚁会以较大的概率转移到距离短的城市。

在这里插入图片描述
3 更新信息素浓度:计算每个蚂蚁经过路径长度 L k L_k Lk,记录当前迭代次数中的最优解(最短路径)。同时,对各个节点连接路径上信息素浓度进行更新。
在这里插入图片描述
蚁群算法分为三种模型:蚁周模型、蚁量模型、蚁密模型。蚁周模型是完成一次路径循环后,蚂蚁才释放信息素,其利用的是全局信息。蚁量模型和蚁密模型蚂蚁完成一步后就更新路径上的信息素,其利用的是局部信息。
蚁周模型公式:
Δ τ i j k = { Q L k ,  如果蚂蚁  k  经过路径城市  i  到  j 0 ,  否则  \Delta \tau_{i j}^{k}=\left\{

QLk, 如果蚂蚁 k 经过路径城市 i 到 j0, 否则 
\right. Δτijk={LkQ, 如果蚂蚁 k 经过路径城市 i  j0, 否则 
Q Q Q为信息素常量, L k L_k Lk表示第 k k k只蚂蚁在本次循环中所走路径的长度。
在这里插入图片描述
4 判断是否中止:若 i t e r < i t e r m a x iter<itermax iter<itermax,则令 i t e r = i t e r + 1 iter=iter+1 iter=iter+1,清空蚂蚁经过路径的记录表,并返回步骤2;否则,终止计算,输出最优解

一次迭代就是指m只蚂蚁都走完所有的城市,即存在m个搜索路径。将所有路径进行比较,选择长度最短的路径,做出这一次迭代的可视化结果,更新信息素。并将当前的最短路径与过往的最短路径长度进行对比,同时迭代次数加1。然后判断当前迭代次数是否等于设置的迭代次数。如果等于则停止迭代,否则进行下一次迭代

3 代码实现

使用蚁群算法解决旅行商问题(TSP)

%% I. 清空环境变量
clear all
clc
%% II. 导入数据
% load citys_data.mat
 citys = [16.4700   96.1000
     16.4700   94.4400
     20.0900   92.5400
     22.3900   93.3700
     25.2300   97.2400
     22.0000   96.0500
     20.4700   97.0200
     17.2000   96.2900
     16.3000   97.3800
     14.0500   98.1200
     16.5300   97.3800
     21.5200   95.5900
     19.4100   97.1300
     20.0900   92.5500];
%% III. 计算城市间相互距离
n = size(citys,1); % 城市数量
D = zeros(n,n);
for i = 1:n
    for j = 1:n
        if i ~= j
            D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));
        else
            D(i,j) = 1e-4;  %如果是0会导致矩阵对角线都是0 导致启发函数无穷大 因此取个很小的值    
        end
    end    
end
 
%% IV. 初始化参数
m = 50;                              % 蚂蚁数量
alpha = 1;                           % 信息素重要程度因子
beta = 5;                            % 启发函数重要程度因子
rho = 0.1;                           % 信息素挥发因子
Q = 1;                               % 常系数
Eta = 1./D;                          % 启发函数
Tau = ones(n,n);                     % 信息素矩阵
Table = zeros(m,n);                  % 路径记录表,每一行代表一个蚂蚁走过的路径
iter = 1;                            % 迭代次数初值
iter_max = 200;                      % 最大迭代次数 
Route_best = zeros(iter_max,n);      % 各代最佳路径       
Length_best = zeros(iter_max,1);     % 各代最佳路径的长度  
Length_ave = zeros(iter_max,1);      % 各代路径的平均长度  
 
%% V. 迭代寻找最佳路径
while iter <= iter_max
     % 随机产生各个蚂蚁的起点城市
      start = zeros(m,1);
      for i = 1:m
          temp = randperm(n);
          start(i) = temp(1);
      end
      Table(:,1) = start; 
      citys_index = 1:n;
      % 逐个蚂蚁路径选择
      for i = 1:m
          % 逐个城市路径选择
         for j = 2:n
             tabu = Table(i,1:(j - 1));           % 已访问的城市集合(禁忌表)
             allow_index = ~ismember(citys_index,tabu);
             allow = citys_index(allow_index);  % 待访问的城市集合
             P = allow;
             % 计算城市间转移概率
             for k = 1:length(allow)
                 P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta;
             end
             P = P/sum(P);
             % 轮盘赌法选择下一个访问城市
             Pc = cumsum(P);     
            target_index = find(Pc >= rand); 
            target = allow(target_index(1));
            Table(i,j) = target;
         end
      end
      % 计算各个蚂蚁的路径距离
      Length = zeros(m,1);
      for i = 1:m
          Route = Table(i,:);
          for j = 1:(n - 1)
              Length(i) = Length(i) + D(Route(j),Route(j + 1));
          end
          Length(i) = Length(i) + D(Route(n),Route(1));
      end
      % 计算最短路径距离及平均距离
      if iter == 1
          [min_Length,min_index] = min(Length);
          Length_best(iter) = min_Length;  
          Length_ave(iter) = mean(Length);
          Route_best(iter,:) = Table(min_index,:);
      else
          [min_Length,min_index] = min(Length);
          Length_best(iter) = min(Length_best(iter - 1),min_Length);
          Length_ave(iter) = mean(Length);
          if Length_best(iter) == min_Length
              Route_best(iter,:) = Table(min_index,:);
          else
              Route_best(iter,:) = Route_best((iter-1),:);
          end
      end
      % 更新信息素
      Delta_Tau = zeros(n,n);
      % 逐个蚂蚁计算
      for i = 1:m
          % 逐个城市计算
          for j = 1:(n - 1)
              Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);
          end
          Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);
      end
      Tau = (1-rho) * Tau + Delta_Tau;
    % 迭代次数加1,清空路径记录表
    iter = iter + 1;
    Table = zeros(m,n);
end
 
%% VI. 结果显示
[Shortest_Length,index] = min(Length_best);
Shortest_Route = Route_best(index,:);
disp(['最短距离:' num2str(Shortest_Length)]);
disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);
%% VII. 绘图
figure(1)
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...
     [citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');
grid on
for i = 1:size(citys,1)
    text(citys(i,1),citys(i,2),['   ' num2str(i)]);
end
text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),'       起点');
text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),'       终点');
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])
figure(2)
plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')
legend('最短距离','平均距离')
xlabel('迭代次数')
ylabel('距离')
title('各代最短距离与平均距离对比')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
最短距离:29.3405
最短路径:6  12   7  13   8  11   9  10   1   2  14   3   4   5   6
  • 1
  • 2

运行结果:
在这里插入图片描述

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/640488
推荐阅读
相关标签
  

闽ICP备14008679号