赞
踩
目录
基于Redis集群解决单机Redis存在的问题。
单机的Redis存在四大问题:
(1)数据丢失问题:Redis是内存存储,服务重启可能会丢失数据。
(2)并发能力问题:单节点Redis并发能力虽然不错,但也无法满足如618这样的高并发场景。
(3)故障恢复问题:如果Redis宕机,则服务不可用,需要一种自动的故障恢复手段。
(4)存储能力问题:Redis基于内存,单节点能存储的数据量难以满足海量数据需求。
Redis有两种持久化方案:
RDB持久化
AOF持久化
RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。
RDB持久化在四种情况下会执行:
执行save命令
执行bgsave命令
Redis停机时
触发RDB条件时
1)save命令
执行下面的命令,可以立即执行一次RDB:
save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。
2)bgsave命令
下面的命令可以异步执行RDB:
这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。
3)停机时
Redis停机时会执行一次save命令,实现RDB持久化。
4)触发RDB条件
Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:
- # 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
- save 900 1
- save 300 10
- save 60 10000
RDB的其它配置也可以在redis.conf文件中设置:
- # 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
- rdbcompression yes
-
- # RDB文件名称
- dbfilename dump.rdb
-
- # 文件保存的路径目录
- dir ./
bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。
fork子进程过程
注意:虽然子进程是对主进程没影响的,但fork子进程的过程是要主线程来做,这个时候是阻塞的,所以我们需要加快fork的速度。
如下图所示,主进程其实是无法直接操作物理内存的,所以应该有个做映射的虚拟内存(页表),主进程通过页表映射到物理内存里的数据,这时就可以访问了。而fork子进程的时候,把页面直接拷贝一份给子进程,这样子进程就能通过相同的页表映射到物理内存中的数据了。
copy-on-write
那么既然是异步的,子进程在写RDB的过程中,主进程这时接收用户的请求来修改内存中的数据,主进程在写,子进程在读,那么会出现一些脏数据,为了避免此类情况发生。
所以fork采用的是copy-on-write技术:
当主进程执行读操作时,访问共享内存;
当主进程执行写操作时,则会拷贝一份数据,执行写操作。
如图所示,当主进程来了一条写命令,先拷贝一份数据,以后主进程写和读的操作都作用在拷贝的副本上。
那么有一种情况,假如子进程RDB写的过程比较慢,在子进程写的过程中,主进程不断的有新的请求过来,不断的修改共同数据,所有的数据都被修改了一遍,那么这种情况下意味着所有的数据都要拷贝一份,意味着对内存的占用翻倍了,这种情况理论上是有可能发生的,虽然是极端情况。
RDB方式bgsave的基本流程?
fork主进程得到一个子进程,共享内存空间
子进程读取内存数据并写入新的RDB文件
用新RDB文件替换旧的RDB文件
RDB会在什么时候执行?save 60 1000代表什么含义?
默认是服务停止时
代表60秒内至少执行1000次修改则触发RDB
RDB的缺点?
RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
fork子进程、压缩、写出RDB文件都比较耗时
AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:
- # 是否开启AOF功能,默认是no
- appendonly yes
- # AOF文件的名称
- appendfilename "appendonly.aof"
AOF的命令记录的频率也可以通过redis.conf文件来配:
- # 表示每执行一次写命令,立即记录到AOF文件
- appendfsync always
- # 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
- appendfsync everysec
- # 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
- appendfsync no
三种策略对比:
因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。
如图,AOF原本有三个命令,但是set num 123 和 set num 666
都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。
所以重写命令后,AOF文件内容就是:mset name jack num 666
Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
- # AOF文件比上次文件 增长超过多少百分比则触发重写
- auto-aof-rewrite-percentage 100
- # AOF文件体积最小多大以上才触发重写
- auto-aof-rewrite-min-size 64mb
RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。
单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。
我们搭建的主从集群结构如图:
共包含三个节点,一个主节点,两个从节点。
这里我们会在同一台虚拟机中开启3个redis实例,模拟主从集群,信息如下:
要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。
1)创建目录
我们创建三个文件夹,名字分别叫7001、7002、7003:
- # 进入/tmp目录
- cd /tmp
- # 创建目录
- mkdir 7001 7002 7003
如图:
2)恢复原始配置
修改redis-6.2.4/redis.conf文件,将其中的持久化模式改为默认的RDB模式,AOF保持关闭状态。
- # 开启RDB
- # save ""
- save 3600 1
- save 300 100
- save 60 10000
-
- # 关闭AOF
- appendonly no
3)拷贝配置文件到每个实例目录
然后将redis-6.2.4/redis.conf文件拷贝到三个目录中(在/tmp目录执行下列命令):
- # 方式一:逐个拷贝
- cp redis-6.2.4/redis.conf 7001
- cp redis-6.2.4/redis.conf 7002
- cp redis-6.2.4/redis.conf 7003
-
- # 方式二:管道组合命令,一键拷贝
- echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf
4)修改每个实例的端口、工作目录
修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将rdb文件保存位置都修改为自己所在目录(在/tmp目录执行下列命令):
- sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
- sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
- sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf
5)修改每个实例的声明IP
虚拟机本身有多个IP,为了避免将来混乱,我们需要在redis.conf文件中指定每一个实例的绑定ip信息,格式如下:
- # redis实例的声明 IP
- replica-announce-ip 192.168.150.101
每个目录都要改,我们一键完成修改(在/tmp目录执行下列命令):
- # 逐一执行
- sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
- sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
- sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf
-
- # 或者一键修改
- printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.150.101' {}/redis.conf
为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:
- # 第1个
- redis-server 7001/redis.conf
- # 第2个
- redis-server 7002/redis.conf
- # 第3个
- redis-server 7003/redis.conf
启动后:
如果要一键停止,可以运行下面命令:
printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown
现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者slaveof(5.0以前)命令。
有临时和永久两种模式:
修改配置文件(永久生效)
在redis.conf中添加一行配置:slaveof <masterip> <masterport>
使用redis-cli客户端连接到redis服务,执行slaveof命令(重启后失效):
slaveof <masterip> <masterport>
注意:在5.0以后新增命令replicaof,与salveof效果一致。
这里我们为了演示方便,使用方式二。
通过redis-cli命令连接7002,执行下面命令:
- # 连接 7002
- redis-cli -p 7002
- # 执行slaveof
- slaveof 192.168.150.101 7001
通过redis-cli命令连接7003,执行下面命令:
- # 连接 7003
- redis-cli -p 7003
- # 执行slaveof
- slaveof 192.168.150.101 7001
然后连接 7001节点,查看集群状态:
- # 连接 7001
- redis-cli -p 7001
- # 查看状态
- info replication
结果:
执行下列操作以测试:
利用redis-cli连接7001,执行set num 123
利用redis-cli连接7002,执行get num
,再执行set num 666
利用redis-cli连接7003,执行get num
,再执行set num 888
可以发现,只有在7001这个master节点上可以执行写操作,7002和7003这两个slave节点只能执行读操作。
主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:
这里有一个问题,master如何得知salve是第一次来连接呢??
有几个概念,可以作为判断依据:
Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。
因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。
因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。
master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。
master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。
因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致。
如图:
完整流程描述:
slave节点请求增量同步
master节点判断replid,发现不一致,拒绝增量同步
master将完整内存数据生成RDB,发送RDB到slave
slave清空本地数据,加载master的RDB
master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
slave执行接收到的命令,保持与master之间的同步
全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步。
什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:
那么master怎么知道slave与自己的数据差异在哪里呢?
master怎么知道slave与自己的数据差异在哪里呢?
这就要说到全量同步时的repl_baklog文件了。
这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。
repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:
slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。
随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:
直到数组被填满:
此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。
但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:
如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:
棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。
主从同步可以保证主从数据的一致性,非常重要。
可以从以下几个方面来优化Redis主从就集群:
在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力
主从从架构图:
简述全量同步和增量同步区别?
全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave
什么时候执行全量同步?
slave节点第一次连接master节点时
slave节点断开时间太久,repl_baklog中的offset已经被覆盖时
什么时候执行增量同步?
slave节点断开又恢复,并且在repl_baklog中能找到offset时
哨兵的结构如图:
哨兵的作用如下:
监控:Sentinel 会不断检查您的master和slave是否按预期工作。
自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主。
通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端。
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:
首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点。
然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举。
如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高。
最后是判断slave节点的运行id大小,越小优先级越高。
当选出一个新的master后,该如何实现切换呢?
流程如下:
sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master。
sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点。
Sentinel的三个作用是什么?
监控
故障转移
通知
Sentinel如何判断一个redis实例是否健康?
每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
如果大多数sentinel都认为实例主观下线,则判定客观下线
故障转移步骤有哪些?
首先选定一个slave作为新的master,执行slaveof no one
然后让所有节点都执行slaveof 新master
修改故障节点配置,添加slaveof 新master
三个sentinel实例信息如下:
要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。
我们创建三个文件夹,名字分别叫s1、s2、s3:
- # 进入/tmp目录
- cd /tmp
- # 创建目录
- mkdir s1 s2 s3
如图:
然后我们在s1目录创建一个sentinel.conf文件,添加下面的内容:
- port 27001
- sentinel announce-ip 192.168.150.101
- sentinel monitor mymaster 192.168.150.101 7001 2
- sentinel down-after-milliseconds mymaster 5000
- sentinel failover-timeout mymaster 60000
- dir "/tmp/s1"
解读:
port 27001
:是当前sentinel实例的端口
sentinel monitor mymaster 192.168.150.101 7001 2
:指定主节点信息
mymaster
:主节点名称,自定义,任意写
192.168.150.101 7001
:主节点的ip和端口
2
:选举master时的quorum值
然后将s1/sentinel.conf文件拷贝到s2、s3两个目录中(在/tmp目录执行下列命令):
- # 方式一:逐个拷贝
- cp s1/sentinel.conf s2
- cp s1/sentinel.conf s3
- # 方式二:管道组合命令,一键拷贝
- echo s2 s3 | xargs -t -n 1 cp s1/sentinel.conf
修改s2、s3两个文件夹内的配置文件,将端口分别修改为27002、27003:
- sed -i -e 's/27001/27002/g' -e 's/s1/s2/g' s2/sentinel.conf
- sed -i -e 's/27001/27003/g' -e 's/s1/s3/g' s3/sentinel.conf
为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:
- # 第1个
- redis-sentinel s1/sentinel.conf
- # 第2个
- redis-sentinel s2/sentinel.conf
- # 第3个
- redis-sentinel s3/sentinel.conf
启动后:
尝试让master节点7001宕机,查看sentinel日志:
查看7003的日志:
查看7002的日志:
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:
海量数据存储问题
高并发写的问题
使用分片集群可以解决上述问题,如图:
分片集群特征:
集群中有多个master,每个master保存不同数据
每个master都可以有多个slave节点
master之间通过ping监测彼此健康状态
客户端请求可以访问集群任意节点,最终都会被转发到正确节点
分片集群需要的节点数量较多,这里我们搭建一个最小的分片集群,包含3个master节点,每个master包含一个slave节点,结构如下:
这里我们会在同一台虚拟机中开启6个redis实例,模拟分片集群,信息如下:
删除之前的7001、7002、7003这几个目录,重新创建出7001、7002、7003、8001、8002、8003目录:
- # 进入/tmp目录
- cd /tmp
- # 删除旧的,避免配置干扰
- rm -rf 7001 7002 7003
- # 创建目录
- mkdir 7001 7002 7003 8001 8002 8003
在/tmp下准备一个新的redis.conf文件,内容如下:
- port 6379
- # 开启集群功能
- cluster-enabled yes
- # 集群的配置文件名称,不需要我们创建,由redis自己维护
- cluster-config-file /tmp/6379/nodes.conf
- # 节点心跳失败的超时时间
- cluster-node-timeout 5000
- # 持久化文件存放目录
- dir /tmp/6379
- # 绑定地址
- bind 0.0.0.0
- # 让redis后台运行
- daemonize yes
- # 注册的实例ip
- replica-announce-ip 192.168.150.101
- # 保护模式
- protected-mode no
- # 数据库数量
- databases 1
- # 日志
- logfile /tmp/6379/run.log
将这个文件拷贝到每个目录下:
- # 进入/tmp目录
- cd /tmp
- # 执行拷贝
- echo 7001 7002 7003 8001 8002 8003 | xargs -t -n 1 cp redis.conf
修改每个目录下的redis.conf,将其中的6379修改为与所在目录一致:
- # 进入/tmp目录
- cd /tmp
- # 修改配置文件
- printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t sed -i 's/6379/{}/g' {}/redis.conf
因为已经配置了后台启动模式,所以可以直接启动服务:
- # 进入/tmp目录
- cd /tmp
- # 一键启动所有服务
- printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-server {}/redis.conf
通过ps查看状态:
ps -ef | grep redis
发现服务都已经正常启动:
如果要关闭所有进程,可以执行命令:
ps -ef | grep redis | awk '{print $2}' | xargs kill
或者(推荐这种方式):
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-cli -p {} shutdown
虽然服务启动了,但是目前每个服务之间都是独立的,没有任何关联。
我们需要执行命令来创建集群,在Redis5.0之前创建集群比较麻烦,5.0之后集群管理命令都集成到了redis-cli中。
1)Redis5.0之前
Redis5.0之前集群命令都是用redis安装包下的src/redis-trib.rb来实现的。因为redis-trib.rb是有ruby语言编写的所以需要安装ruby环境。
- # 安装依赖
- yum -y install zlib ruby rubygems
- gem install redis
然后通过命令来管理集群:
- # 进入redis的src目录
- cd /tmp/redis-6.2.4/src
- # 创建集群
- ./redis-trib.rb create --replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003
2)Redis5.0以后
我们使用的是Redis6.2.4版本,集群管理以及集成到了redis-cli中,格式如下:
命令说明:
redis-cli --cluster
或者./redis-trib.rb
:代表集群操作命令
create
:代表是创建集群
--replicas 1
或者--cluster-replicas 1
:指定集群中每个master的副本个数为1,此时节点总数 ÷ (replicas + 1)
得到的就是master的数量。因此节点列表中的前n个就是master,其它节点都是slave节点,随机分配到不同master
运行后的样子:
这里输入yes,则集群开始创建:
通过命令可以查看集群状态:
redis-cli -p 7001 cluster nodes
尝试连接7001节点,存储一个数据:
- # 连接
- redis-cli -p 7001
- # 存储数据
- set num 123
- # 读取数据
- get num
- # 再次存储
- set a 1
结果悲剧了:
集群操作时,需要给redis-cli
加上-c
参数才可以:
redis-cli -c -p 7001
这次可以了:
Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:
数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:
key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分
key中不包含“{}”,整个key都是有效部分
例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。
如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到103节点。
到了7003后,执行get num
时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点。
Redis如何判断某个key应该在哪个实例?
将16384个插槽分配到不同的实例
根据key的有效部分计算哈希值,对16384取余
余数作为插槽,寻找插槽所在实例即可
如何将同一类数据固定的保存在同一个Redis实例?
这一类数据使用相同的有效部分,例如key都以{typeId}为前缀
其实就是能动态的添加节点删除节点。
redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:
比如,添加节点的命令:
需求:向集群中添加一个新的master节点,并向其中存储 num = 10
启动一个新的redis实例,端口为7004
添加7004到之前的集群,并作为一个master节点
给7004节点分配插槽,使得num这个key可以存储到7004实例
这里需要两个新的功能:
添加一个节点到集群中
将部分插槽分配到新插槽
创建一个文件夹:
mkdir 7004
拷贝配置文件:
cp redis.conf /7004
修改配置文件:
sed /s/6379/7004/g 7004/redis.conf
启动
redis-server 7004/redis.conf
添加节点的语法如下:
执行命令:
redis-cli --cluster add-node 192.168.150.101:7004 192.168.150.101:7001
通过命令查看集群状态:
redis-cli -p 7001 cluster nodes
如图,7004加入了集群,并且默认是一个master节点:
但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上。
我们要将num存储到7004节点,因此需要先看看num的插槽是多少:
如上图所示,num的插槽为2765。
我们可以将0~3000的插槽从7001转移到7004,命令格式如下:
具体命令如下:
建立连接:
得到下面的反馈:
询问要移动多少个插槽,我们计划是3000个:
新的问题来了:
哪个node来接收这些插槽??
显然是7004,那么7004节点的id是多少呢?
复制这个id,然后拷贝到刚才的控制台后:
这里询问,你的插槽是从哪里移动过来的?
all:代表全部,也就是三个节点各转移一部分
具体的id:目标节点的id
done:没有了
这里我们要从7001获取,因此填写7001的id:
填完后,点击done,这样插槽转移就准备好了:
确认要转移吗?输入yes:
然后,通过命令查看结果:
可以看到:
目的达成。
集群初识状态是这样的:
其中7001、7002、7003都是master,我们计划让7002宕机。
当集群中有一个master宕机会发生什么呢?
直接停止一个redis实例,例如7002:
redis-cli -p 7002 shutdown
1)首先是该实例与其它实例失去连接
2)然后是疑似宕机:
3)最后是确定下线,自动提升一个slave为新的master:
4)当7002再次启动,就会变为一个slave节点了:
利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:
这种failover命令可以指定三种模式:
缺省:默认的流程,如图1~6歩
force:省略了对offset的一致性校验
takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见
案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位
步骤如下:
1)利用redis-cli连接7002这个节点
2)执行cluster failover命令
如图:
效果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。