当前位置:   article > 正文

干货 | 10分钟带你彻底了解column generation(列生成)算法的原理附java代码

cutting stock problem研究背景

OUTLINE

  • 前言
  • 预备知识预警
  • 什么是column generation
  • 相关概念科普
  • Cutting Stock Problem
  • CG求解Cutting Stock Problem
  • 列生成代码
  • reference

    00 前言

    这几天勤奋的小编一直在精确算法的快乐学习之中不能自拔。到列生成算法这一块,看了好几天总算把这块硬骨头给啃下来了。然后发现网上关于列生成的教学资料也不是很多,大部分讲的不是那么通俗易懂。所以今天就打算写一写这个算法,尽可能写得通俗易懂。

01 预备知识预警

由于列生成算法涉及的知识点非常多,所以在开始之前希望读者必须要具备以下的基础知识,不然就没法往下玩了:

  • 线性规划以及线性规划对偶问题
  • 单纯形法原理
  • 原问题的影子价格(shadow price)以及对偶变量
  • 单纯形法非基变量进基时非基变量检验数(reduce cost)的计算

以上内容我就不展开科普了。如果对这些概念还有不熟悉的小伙伴,一定要回去搞清楚再往下看哦。

02 什么是column generation?

2.1 相关背景

Column generation 是一种用于求解大规模线性优化问题的非常高效的算法。[3]其理论基础是由Danzig等于1960年提出。本质上而言,列生成算法就是单纯形法的一种形式,是用来求解线性规划问题的。列生成算法已被应用于求解如下著名的NP-hard优化问题:机组人员调度问题(Crew Assignment Problem)、切割问题(Cutting Stock Problem)、车辆路径问题(Vehicle Routing Problem)、单资源工厂选址问题(The single facility location problem )等。

2.2 larger linear programs

在某些线性优化问题的模型中,约束的数目有限,但是变量的数目随着问题规模的增长会爆炸式的增长,因此不能把所有的变量都显性的在模型中表达出来。比如下面一个线性规划问题:

min(y1+...+yn)R1:a11y1+...+a1nyn10R2:a21y1+...+a2nyn40R3:a31y1+...+a3nyn80

从中可以看出,约束条件只有三个,但是当n=10000时,其变量数就达到了10000个。这类问题就是大规模的线性优化问题了。

2.3 column generation

单纯型法虽然能保证在数次迭代后找到最优解,但是其面对变量很多的线性规划问题就显得很弱了。因为它需要去在众多变量里进行基变换,就上面的问题而言,你想想你要在近10000个变量里面找个能进基的,活着不好吗?

再有,在用单纯形法求解这类线性规划问题时,基变量(basic variable)只与约束的个数相关,每次迭代只会有一个新的非基变量(non-basic variable)进基,因此,在整个求解过程中其实只有很少一部分变量会被涉及到。

因此,有人基于单纯型法提出了列生成算法。其思路大概如下:[1]

  1. 先把原问题(master problem)restrict到一个规模更小(即变量数比原问题少的)的restricted master problem,在restricted master problem上用单纯型法求最优解,但是此时求得的最优解只是restricted master problem上的,并不是master problem的最优解。

  2. 此时,就需要通过一个subproblem去check在那些未被考虑的变量中是否有使得reduced cost小于零的?如果有,那么就把这个变量的相关系数列加入到restricted master problem的系数矩阵中,回到第1步。

经过反复的迭代,直到subproblem中的reduced cost rate大于等于零,那么master problem就求到了最优解。

看算法流程图会更加直观哦:[2]

1240

03 相关概念科普

刚刚讲的内容涉及到了几个概念,master problem,restricted master problem,subproblem等,这一节来把这几个概念给讲清楚。基于一个问题线性规划问题:

min(y1+...+yn)R1:a11y1+...+a1nynb1R2:a21y1+...+a2nynb2Rm:am1y1+...+amnynbm

3.1 master problem(MP)

master problem可以认为是原问题。即

min(y1+...+yn)R1:a11y1+...+a1nynb1R2:a21y1+...+a2nynb2Rm:am1y1+...+amnynbm

3.2 restricted master problem(RMP)

前面我们说过,把原问题(master problem)restrict到一个规模更小(即变量数比原问题少的)的就是restricted master problem了。比如可以用启发式算法,在上面的master problem找出满足条件(也就是形成的restricted master problem必须要有可行解)的k个列,得到如下的restricted master problem:

min(y1+y2+...+yk)R1:a11y1+...+a1kykb1R2:a21y1+...+a2kykb2Rm:am1y1+...+amkykbm

可以看到,相比原来的master problem,restricted master problem相当于把yk+1...ym强制限制为非基变量了。[4]

3.3 subproblem

核能预警,如果这部分看不懂,请确保预备知识过关。如果预备知识不过关,请在运筹学老师的陪同下观看,谢谢合作!

上面的限制主问题求解完成后,我们想使用单纯型法进行基变量的转换,看看yk+1...ym中,是否有可以转入基变量的列。还记得怎么找进基的非基变量吗?(不记得就去问你们的运筹学老师)。当然是通过非基变量的检验数辣,通过σj=cjcBB1aj,在yk+1...ym中寻找检验数最小并且为负数的变量,将变量对应的那一列添加到RMP中。

那么,在检验数的计算公式中,大家还记得cBB1是什么吗?cBB1有两重含义:

  • 通过求解RMP问题得到的影子价格(shadow price)。
  • 通过求解RMP对偶问题得到的对偶变量(dual variable)。

所以在开始之前小编一直强调预备知识一定要过关。这两个含义意味着我们有上面两种方式得到cBB1,不过我们一般倾向于使用第二种,WHY?
1240
虽然通过单纯型法直接求解restricted master problem能得到cBB1。但是restricted master problem也可能是一个变量很多的线性规划。前面也说过了,单纯型法对变量很多的问题是无能为力的。因此通过单纯型法求restricted master problemde的对偶问题(将restricted master problem对偶一下,就能使得变量数大幅减小,因为这些变量转换成了对偶问题中的限制条件了),能更快地得到子问题想要的cBB1。[1]

所以我们总结一下:
通过求解RMP问题或者RMP对偶问题,得到我们想要的cBB1以后,subproblem就是通过σj=cjcBB1aj这条公式,在yk+1...ym中寻找检验数为负并且最小的变量,将变量对应的那一列添加到RMP中。

3.4 算法流程图

通过上面讲了这么多以后,这里在给出一个更详细的流程图:[5]

1240

04 Cutting Stock Problem[1]

讲column generation怎么可能少得了Cutting Stock Problem这个经典的问题呢!
1240

我们有以下问题,原纸卷每个长为L=17m,顾客们分别需要25个3m长,20个5m长,18个7m长的纸卷。那么需要怎样切割才能使得浪费最小呢?

Master Problem

Column Generation Formulation:

  • P是所有可行的裁剪方案的集合,里面方案的总数为n(我们并不需要确切的知道这个值是多少,只需要知道它很大)。
  • aij 表示第j种方案里类别i的个数。
  • yj表示第 j 种方案的选择个数。

于是,我们得到如下模型:

min(y1+...+yn)R1:a11y1+...+a1nyn25R2:a21y1+...+a2nyn20R3:a31y1+...+a3nyn18

这样,我们得到了Cutting Stock Problem的Master Problem。

05 CG求解Cutting Stock Problem

通过上面的问题分析和建模以后,我们这一步一步一步来求解该问题,让大家彻底理解column generation这个过程。该过程模拟需要用到一个线性求解器,大家还记得小编以前讲过的lpsolve的教程吗?赶紧去翻一下以前的教程,把lpsolveIDE装上,然后跟着小编的脚步一步一步往下走。
1240

5.1 restricted master problem(RMP)

前面我们完成了问题的建模,得到了Cutting Stock Problem的Master Problem。现在,我们可以用启发式算法找到一个满足客户需要的初始解:
首先,一个卷筒有三种切割方案:
方案1:切成5个3m
方案2:切成2个6m
方案3:切成2个7m

很容易得出,5个方案1、10个方案2、8个方案3,是能满足所有客户需求的。即得到MP的一个RMP如下:

min(y1+...+y3)R1:a11y1+...+a13y325R2:a21y1+...+a23y320R3:a31y1+...+a33y318

其中,
a11=5,a12=0,a13=0a21=0,a22=2,a13=0a31=0,a32=0,a13=2

这三列分别对应着5个方案1、10个方案2、8个方案3。还有一点需要注意的,对于每一列,都需要满足:
3a1j+6a2j+7a3j16,也就是每一卷纸只有16的长度,不能超出这个长度。这个叫列生成规则,不同问题有不同的规则约束。subproblem在寻找某些列或者生成某些列时,就是受到列生成规则的约束的。

5.2 开始列生成过程

iteration 1

RMP:

min(y1+...+y3)R1:5y1+0y2+0y325R2:0y1+2y2+0y320R3:0y1+0y2+2y318

将该模型输入lpsolve,得到对偶变量如下:
1240

得到cBB1=[0.2,0.5,0.5]。现在要找一列加入RMP,是哪一列呢?现在还不知道,我们暂记为α4=[a14,a24,a34]T。非基变量检验数σ4=c4cBB1α4=10.2a140.5a240.5a34

subproblem:

min(10.2a140.5a240.5a34)s.t.3a14+6a24+7a3416aijZ

求解结果得$ \alpha_4 = [1,2,0]^T, \sigma_4= -0.2 < 0,reducedcost \alpha_4$加入RMP,开始第二轮迭代。

iteration 2

RMP:

min(y1+...+y3+y4)R1:5y1+0y2+0y3+1y425R2:0y1+2y2+0y3+2y420R3:0y1+0y2+2y3+0y318

将该模型输入lpsolve,得到对偶变量如下:
1240

得到cBB1=[0.2,0.4,0.5]。现在要找一列加入RMP,是哪一列呢?现在还不知道,我们暂记为α5=[a15,a25,a35]T。非基变量检验数σ5=c5cBB1α5=10.2a150.4a250.5a35

subproblem:

min(10.2a150.4a250.5a35)s.t.3a15+6a25+7a3516aijZ

求解结果得$ \alpha_5 = [1,1,1]^T, \sigma_5= -0.1 < 0,reducedcost \alpha_5$加入RMP,开始第三轮迭代。

iteration 3

RMP:

min(y1+...+y3+y4+y5)R1:5y1+0y2+0y3+1y4+1y525R2:0y1+2y2+0y3+2y4+1y520R3:0y1+0y2+2y3+0y3+1y518

将该模型输入lpsolve,得到对偶变量如下:
1240

得到cBB1=[0.2,0.4,0.4]。现在要找一列加入RMP,是哪一列呢?现在还不知道,我们暂记为α6=[a16,a26,a36]T。非基变量检验数σ6=c6cBB1α6=10.2a160.4a260.5a36

subproblem:

min(10.2a160.4a260.5a36)s.t.3a16+6a26+7a3616aijZ

求解结果得$ \alpha_6 = [5,0,0]^T, \sigma_6 = 0,reducedcost \alpha_6$加入RMP,列生成算法结束。

最终,我们求解最后一次迭代的RMP:

min(y1+...+y3+y4+y5)R1:5y1+0y2+0y3+1y4+1y525R2:0y1+2y2+0y3+2y4+1y520R3:0y1+0y2+2y3+0y3+1y518

1240

得到RM的最优解y=[1.2,0,0,1,18],聪明的同学已经主要到了,y1=1.2怎么出现了小数呢,按理说y应该是整数才对啊。回到原问题RM:

min(y1+...+yn)R1:a11y1+...+a1nyn25R2:a21y1+...+a2nyn20R3:a31y1+...+a3nyn18

我们并没有加上yiZ这个约束,这是因为我们在用列生成的时候把这个模型给松弛为了线性模型,毕竟列生成是用于求解linear program的。如果要求解大规模整数规划问题,列生成是无法办到的,后面我们会介绍结合column generation的branch and price方法。

至此,我们已经完完整整把列生成算法给走了一遍。相信列生成算法的原理已经深入各位读者的心里啦。

06 列生成代码

关于Cutting Stock Problem的列生成java代码,可以关注我们的公众号:
请关注公众号【程序猿声】,后台回复【cgcsp】,不包括【】即可下载!

1240

07 reference

转载于:https://www.cnblogs.com/dengfaheng/p/11249879.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/833906
推荐阅读
相关标签
  

闽ICP备14008679号