当前位置:   article > 正文

Kubernetes网络三部曲之二~Service网络_容器云网络三部曲

容器云网络三部曲

前言

在上一篇《Kubernetes网络三部曲~Pod网络》中,波波讲解了K8s的4层网络中的第1层Pod网络。有了Pod网络,K8s集群内的所有Pods在逻辑上都可以看作在一个平面网络内,可以正常IP寻址和互通。但是Pod仅仅是K8s云平台中的虚拟机抽象,最终,我们需要在K8s集群中运行的是应用或者说服务(Service),而一个Service背后一般由多个Pods组成集群,这时候就引入了服务发现(Service Discovery)和负载均衡(Load Balancing)等问题,这就是第2层Service网络要解决的问题,也是本文我要展开分析的问题。

在这里插入图片描述

Service网络概念模型

我们假定第1层Pod网络已经存在,下图是K8s的第2层Service网络的简化概念模型:

在这里插入图片描述

我们假定在K8s集群中部署了一个Account-App应用,这个应用由4个Pod(虚拟机)组成集群一起提供服务,每一个Pod都有自己的PodIP和端口。我们再假定集群内还部署了其它应用,这些应用中有些是Account-App的消费方,也就说有Client Pod要访问Account-App的Pod集群。这个时候自然引入了两个问题:

  1. 服务发现(Service Discovery): Client Pod如何发现定位Account-App集群中Pod的IP?况且Account-App集群中Pod的IP是有可能会变的(英文叫ephemeral),这种变化包括预期的,比如Account-App重新发布,或者非预期的,例如Account-App集群中有Pod挂了,K8s对Account-App进行重新调度部署。
  2. 负载均衡(Load Balancing):Client Pod如何以某种负载均衡策略去访问Account-App集群中的不同Pod实例?以实现负载分摊和HA高可用。

实际上,K8s通过在Client和Account-App的Pod集群之间引入一层Account-Serivce抽象,来解决上述问题:

  1. 服务发现:Account-Service提供统一的ClusterIP来解决服务发现问题,Client只需通过ClusterIP就可以访问Account-App的Pod集群,不需要关心集群中的具体Pod数量和PodIP,即使是PodIP发生变化也会被ClusterIP所屏蔽。注意,这里的ClusterIP实际是个虚拟IP,也称Virtual IP(VIP)。
  2. 负载均衡:Account-Service抽象层具有负载均衡的能力,支持以不同策略去访问Account-App集群中的不同Pod实例,以实现负载分摊和HA高可用。K8s中默认的负载均衡策略是RoundRobin,也可以定制其它复杂策略。

K8s中为何要引入Service抽象?背后的原理是什么?后面我将以技术演进视角来解释这些问题。

服务发现技术演进

DNS域名服务是一种较老且成熟的标准技术,实际上DNS可以认为是最早的一种服务发现技术。

在这里插入图片描述

在K8s中引入DNS实现服务发现其实并不复杂,实际K8s本身就支持Kube-DNS组件。假设K8s引入DNS做服务发现(如上图所示),运行时,K8s可以把Account-App的Pod集群信息(IP+Port等)自动注册到DNS,Client应用则通过域名查询DNS发现目标Pod,然后发起调用。这个方案不仅简单,而且对Client也无侵入(目前几乎所有的操作系统都自带DNS客户端)。但是基于DNS的服务发现也有如下问题:

  1. 不同DNS客户端实现功能有差异,有些客户端每次调用都会去查询DNS服务,造成不必要的开销,而有些客户端则会缓存DNS信息,默认超时时间较长,当目标PodIP发生变化时(在容器云环境中是常态),存在缓存刷新不及时,会导致访问Pod失效。
  2. DNS客户端实现的负载均衡策略一般都比较简单,大都是RoundRobin,有些则不支持负载均衡调用。

考虑到上述不同DNS客户端实现的差异,不在K8s控制范围内,所以K8s没有直接采用DNS技术做服务发现。注意,实际K8s是引入Kube-DNS支持通过域名访问服务的,不过这是建立在CusterIP/Service网络之上,这个我后面会展开。

另外一种较新的服务发现技术,是引入Service Registry+Client配合实现,在当下微服务时代,这是一个比较流行的做法。目前主流的产品,如Netflix开源的Eureka + Ribbon,HashiCorp开源的Consul,还有阿里新开源Nacos等,都是这个方案的典型代表。

在这里插入图片描述

在K8s中引入Service Registry实现服务发现也不复杂,K8s自身带分布式存储etcd就可以实现Service Registry。假设K8s引入Service Registry做服务发现(如上图所示),运行时K8s可以把Account-App和Pod集群信息(IP + Port等)自动注册到Service Registry,Client应用则通过Service Registry查询发现目标Pod,然后发起调用。这个方案也不复杂,而且客户端可以实现灵活的负载均衡策略,但是需要引入客户端配合,对客户应用有侵入性,所以K8s也没有直接采用这种方案。

K8s虽然没有直接采用上述方案,但是它的Service网络实现是在上面两种技术的基础上扩展演进出来的。它融合了上述方案的优点,同时解决了上述方案的不足,下节我会详细剖析K8s的Service网络的实现原理。

K8s的Service网络原理

前面提到,K8s的服务发现机制是在上节讲的Service Registry + DNS基础上发展演进出来的,下图展示K8s服务发现的简化原理:

在这里插入图片描述

 在K8s平台的每个Worker节点上,都部署有两个组件,一个叫Kubelet,另外一个叫Kube-Proxy,这两个组件+Master是K8s实现服务注册和发现的关键。下面我们看下简化的服务注册发现流程。

  • 首先,在服务Pod实例发布时(可以对应K8s发布中的Kind: Deployment),Kubelet会负责启动Pod实例,启动完成后,Kubelet会把服务的PodIP列表汇报注册到Master节点。
  • 其次,通过服务Service的发布(对应K8s发布中的Kind: Service),K8s会为服务分配ClusterIP,相关信息也记录在Master上。
  • 第三,在服务发现阶段,Kube-Proxy会监听Master并发现服务ClusterIP和PodIP列表映射关系,并且修改本地的linux iptables转发规则,指示iptables在接收到目标为某个ClusterIP请求时,进行负载均衡并转发到对应的PodIP上。
  • 运行时,当有消费者Pod需要访问某个目标服务实例的时候,它通过ClusterIP发起调用,这个ClusterIP会被本地iptables机制截获,然后通过负载均衡,转发到目标服务Pod实例上。

实际消费者Pod也并不直接调服务的ClusterIP,而是先调用服务名,因为ClusterIP也会变(例如针对TEST/UAT/PROD等不同环境的发布,ClusterIP会不同),只有服务名一般不变。为了屏蔽ClusterIP的变化,K8s在每个Worker节点上还引入了一个KubeDNS组件,它也监听Master并发现服务名和ClusterIP之间映射关系,这样, 消费者Pod通过KubeDNS可以间接发现服务的ClusterIP。

注意,K8s的服务发现机制和目前微服务主流的服务发现机制(如Eureka + Ribbon)总体原理类似,但是也有显著区别(这些区别主要体现在客户端):

  1. 首先,两者都是采用客户端代理(Proxy)机制。和Ribbon一样,K8s的代理转发和负载均衡也是在客户端实现的,但Ribbon是以Lib库的形式嵌入在客户应用中的,对客户应用有侵入性,而K8s的Kube-Proxy是独立的,每个Worker节点上有一个,它对客户应用无侵入。K8s的做法类似ServiceMesh中的边车(sidecar)做法。
  2. 第二,Ribbon的代理转发是穿透的,而K8s中的代理转发是iptables转发,虽然K8s中有Kube-Proxy,但它只是负责服务发现和修改iptables(或ipvs)规则,实际请求是不穿透Kube-Proxy的。注意早期K8s中的Kube-Proxy代理是穿透的,考虑到有性能损耗和单点问题,后续的版本就改成不穿透了。
  3. 第三,Ribbon实现服务名到服务实例IP地址的映射,它只有一层映射。而K8s中有两层映射,Kube-Proxy实现ClusterIP->PodIP的映射,Kube-DNS实现ServiceName->ClusterIP的映射。

个人认为,对比目前微服务主流的服务发现机制,K8s的服务发现机制抽象得更好,它通过ClusterIP统一屏蔽服务发现和负载均衡,一个服务一个ClusterIP,这个模型和传统的IP网络模型更贴近和易于理解。ClusterIP也是一个IP,但这个IP后面跟的不是一个服务实例,而是一个服务集群,所以叫集群ClusterIP。同时,它对客户应用无侵入,且不穿透没有额外性能损耗。

总结

  1. K8s的Service网络构建于Pod网络之上,它主要目的是解决服务发现(Service Discovery)和负载均衡(Load Balancing)问题。
  2. K8s通过一个ServiceName+ClusterIP统一屏蔽服务发现和负载均衡,底层技术是在DNS+Service Registry基础上发展演进出来。
  3. K8s的服务发现和负载均衡是在客户端通过Kube-Proxy + iptables转发实现,它对应用无侵入,且不穿透Proxy,没有额外性能损耗。
  4. K8s服务发现机制,可以认为是现代微服务发现机制和传统Linux内核机制的优雅结合。

有了Service抽象,K8s中部署的应用都可以通过一个抽象的ClusterIP进行寻址访问,并且消费方不需要关心这个ClusterIP后面究竟有多少个Pod实例,它们的PodIP是什么,会不会变化,如何以负载均衡方式去访问等问题。但是,K8s的Service网络只是一个集群内可见的内部网络,集群外部是看不到Service网络的,也无法直接访问。而我们发布应用,有些是需要暴露出去,要让外网甚至公网能够访问的,这样才能对外提供服务。K8s如何将内部服务暴露出去?这个是波波在下一篇《Kubernetes网络三部曲~外部接入网络》要展开的问题,敬请期待。

————————————————
版权声明:本文为CSDN博主「架构师波波」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/yang75108/article/details/101267444

相关阅读:

k8s-service底层之 Iptables与 IPVS

K8S中iptables和ipvs区别 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/975095
推荐阅读
相关标签
  

闽ICP备14008679号