赞
踩
下文实验需要的yaml文件和压缩包可加我微信获取
微信: luckylucky421302
Prometheus是一个开源的系统监控和报警系统,现在已经加入到CNCF基金会,成为继k8s之后第二个在CNCF托管的项目,在kubernetes容器管理系统中,通常会搭配prometheus进行监控,同时也支持多种exporter采集数据,还支持pushgateway进行数据上报,Prometheus性能足够支撑上万台规模的集群。
1.多维度数据模型
时间序列数据由metrics名称和键值对来组成
可以对数据进行聚合,切割等操作
所有的metrics都可以设置任意的多维标签。
2.灵活的查询语言(PromQL)
可以对采集的metrics指标进行加法,乘法,连接等操作;
3.可以直接在本地部署,不依赖其他分布式存储;
4.通过基于HTTP的pull方式采集时序数据;
5.可以通过中间网关pushgateway的方式把时间序列数据推送到prometheus server端;
6.可通过服务发现或者静态配置来发现目标服务对象(targets)。
7.有多种可视化图像界面,如Grafana等。
8.高效的存储,每个采样数据占3.5 bytes左右,300万的时间序列,30s间隔,保留60天,消耗磁盘大概200G。
9.做高可用,可以对数据做异地备份,联邦集群,部署多套prometheus,pushgateway上报数据
从上图可发现,Prometheus整个生态圈组成主要包括prometheus server,Exporter,pushgateway,alertmanager,grafana,Web ui界面,Prometheusserver由三个部分组成,Retrieval,Storage,PromQL
1.Retrieval负责在活跃的target主机上抓取监控指标数据
2.Storage存储主要是把采集到的数据存储到磁盘中
3.PromQL是Prometheus提供的查询语言模块。
1.PrometheusServer:
用于收集和存储时间序列数据。
2.ClientLibrary:
客户端库,检测应用程序代码,当Prometheus抓取实例的HTTP端点时,客户端库会将所有跟踪的metrics指标的当前状态发送到prometheus server端。
3.Exporters:
prometheus支持多种exporter,通过exporter可以采集metrics数据,然后发送到prometheus server端,所有向promtheus server提供监控数据的程序都可以被称为exporter
4.Alertmanager:
从 Prometheusserver 端接收到 alerts 后,会进行去重,分组,并路由到相应的接收方,发出报警,常见的接收方式有:电子邮件,微信,钉钉, slack等。
5.Grafana:
监控仪表盘,可视化监控数据
6.pushgateway:
各个目标主机可上报数据到pushgatewy,然后prometheus server统一从pushgateway拉取数据。
基本HA模式
基本的HA模式只能确保Promthues服务的可用性问题,但是不解决Prometheus Server之间的数据一致性问题以及持久化问题(数据丢失后无法恢复),也无法进行动态的扩展。因此这种部署方式适合监控规模不大,Promthues Server也不会频繁发生迁移的情况,并且只需要保存短周期监控数据的场景。
基本HA + 远程存储方案
在解决了Promthues服务可用性的基础上,同时确保了数据的持久化,当Promthues Server发生宕机或者数据丢失的情况下,可以快速的恢复。同时PromthuesServer可能很好的进行迁移。因此,该方案适用于用户监控规模不大,但是希望能够将监控数据持久化,同时能够确保PromthuesServer的可迁移性的场景。
基本HA + 远程存储 + 联邦集群方案
- Promthues的性能瓶颈主要在于大量的采集任务,因此用户需要利用Prometheus联邦集群的特性,将不同类型的采集任务划分到不同的Promthues子服务中,从而实现功能分区。例如一个Promthues Server负责采集基础设施相关的监控指标,另外一个Prometheus Server负责采集应用监控指标。再有上层Prometheus Server实现对数据的汇聚。
-
-
- 1.1.5 prometheus工作流程
- 1. Prometheus server可定期从活跃的(up)目标主机上(target)拉取监控指标数据,目标主机的监控数据可通过配置静态job或者服务发现的方式被prometheus server采集到,这种方式默认的pull方式拉取指标;也可通过pushgateway把采集的数据上报到prometheus server中;还可通过一些组件自带的exporter采集相应组件的数据;
- 2.Prometheus server把采集到的监控指标数据保存到本地磁盘或者数据库;
- 3.Prometheus采集的监控指标数据按时间序列存储,通过配置报警规则,把触发的报警发送到alertmanager
- 4.Alertmanager通过配置报警接收方,发送报警到邮件,微信或者钉钉等
- 5.Prometheus 自带的web ui界面提供PromQL查询语言,可查询监控数据
- 6.Grafana可接入prometheus数据源,把监控数据以图形化形式展示出
-
-
- 1.1.6 prometheus如何更好的监控k8s?
- 对于Kubernetes而言,我们可以把当中所有的资源分为几类:
- 1、基础设施层(Node):集群节点,为整个集群和应用提供运行时资源
- 2、容器基础设施(Container):为应用提供运行时环境
- 3、用户应用(Pod):Pod中会包含一组容器,它们一起工作,并且对外提供一个(或者一组)功能
- 4、内部服务负载均衡(Service):在集群内,通过Service在集群暴露应用功能,集群内应用和应用之间访问时提供内部的负载均衡
- 5、外部访问入口(Ingress):通过Ingress提供集群外的访问入口,从而可以使外部客户端能够访问到部署在Kubernetes集群内的服务
- 因此,在不考虑Kubernetes自身组件的情况下,如果要构建一个完整的监控体系,我们应该考虑,以下5个方面:
- 1、集群节点状态监控:从集群中各节点的kubelet服务获取节点的基本运行状态;
- 2、集群节点资源用量监控:通过Daemonset的形式在集群中各个节点部署Node
- Exporter采集节点的资源使用情况;
- 3、节点中运行的容器监控:通过各个节点中kubelet内置的cAdvisor中获取个节点中所有容器的运行状态和资源使用情况;
- 4、从黑盒监控的角度在集群中部署Blackbox Exporter探针服务,检测Service和Ingress的可用性;
- 5、如果在集群中部署的应用程序本身内置了对Prometheus的监控支持,那么我们还应该找到相应的Pod实例,并从该Pod实例中获取其内部运行状态的监控指标。
-
-
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
1.2 安装采集节点资源指标组件node-exporter node-exporter是什么? 采集机器(物理机、虚拟机、云主机等)的监控指标数据,能够采集到的指标包括CPU, 内存,磁盘,网络,文件数等信息。 安装node-exporter组件,在k8s集群的控制节点操作 [root@master1 ~]# kubectl create ns monitor-sa namespace/monitor-sa created 把课件里的node-exporter.tar.gz镜像压缩包上传到k8s的各个节点,手动解压: docker load -i node-exporter.tar.gz node-export.yaml文件在课件,可自行上传到自己k8s的控制节点,内容如下: [root@master1 ~]# cat node-export.yaml #通过kubectl apply更新node-exporter [root@master1 ~]# kubectl apply -f node-export.yaml daemonset.apps/node-exporter created #查看node-exporter是否部署成功 [root@master1 ~]# kubectl get pods -n monitor-sa NAME READY STATUS RESTARTS AGE node-exporter-7cjhw 1/1 Running 0 22s node-exporter-8m2fp 1/1 Running 0 22s node-exporter-c6sdq 1/1 Running 0 22s 通过node-exporter采集数据 curl http://主机ip:9100/metrics #node-export默认的监听端口是9100,可以看到当前主机获取到的所有监控数据 curl http://192.168.40.130:9100/metrics | grep node_cpu_seconds 显示192.168.40.130主机cpu的使用情况 # HELP node_cpu_seconds_total Seconds the cpus spent in each mode. # TYPE node_cpu_seconds_total counter node_cpu_seconds_total{cpu="0",mode="idle"} 72963.37 node_cpu_seconds_total{cpu="0",mode="iowait"} 9.35 node_cpu_seconds_total{cpu="0",mode="irq"} 0 node_cpu_seconds_total{cpu="0",mode="nice"} 0 node_cpu_seconds_total{cpu="0",mode="softirq"} 151.4 node_cpu_seconds_total{cpu="0",mode="steal"} 0 node_cpu_seconds_total{cpu="0",mode="system"} 656.12 node_cpu_seconds_total{cpu="0",mode="user"} 267.1 #HELP:解释当前指标的含义,上面表示在每种模式下node节点的cpu花费的时间,以s为单位 #TYPE:说明当前指标的数据类型,上面是counter类型 node_cpu_seconds_total{cpu="0",mode="idle"} : cpu0上idle进程占用CPU的总时间,CPU占用时间是一个只增不减的度量指标,从类型中也可以看出node_cpu的数据类型是counter(计数器) counter计数器:只是采集递增的指标 curl http://192.168.40.130:9100/metrics | grep node_load # HELP node_load1 1m load average. # TYPE node_load1 gauge node_load1 0.1 node_load1该指标反映了当前主机在最近一分钟以内的负载情况,系统的负载情况会随系统资源的使用而变化,因此node_load1反映的是当前状态,数据可能增加也可能减少,从注释中可以看出当前指标类型为gauge(标准尺寸) gauge标准尺寸:统计的指标可增加可减少 1.3 在k8s集群中安装Prometheus server服务 1.3.1 创建sa账号 #在k8s集群的控制节点操作,创建一个sa账号 [root@master1 ~]# kubectl create serviceaccount monitor -n monitor-sa serviceaccount/monitor created #把sa账号monitor通过clusterrolebing绑定到clusterrole上 [root@master1 ~]# kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor 1.3.2 创建数据目录 #在node1作节点创建存储数据的目录: [root@node1 ~]# mkdir /data [root@node1 ~]# chmod 777 /data/ 1.3.3 安装prometheus服务 以下步骤均在k8s集群的控制节点操作: 创建一个configmap存储卷,用来存放prometheus配置信息 prometheus-cfg.yaml文件在课件,可自行上传到自己k8s的控制节点,内容如下: [root@master1 ~]# cat prometheus-cfg.yaml #通过kubectl apply更新configmap [root@master1 ~]# kubectl apply -f prometheus-cfg.yaml configmap/prometheus-config created 通过deployment部署prometheus 安装prometheus server需要的镜像prometheus-2-2-1.tar.gz在课件,上传到k8s的工作节点node1上,手动解压: docker load -i prometheus-2-2-1.tar.gz prometheus-deploy.yaml文件在课件,上传到自己的k8s的控制节点,内容如下: [root@master1 ~]# cat prometheus-deploy.yaml 注意:在上面的prometheus-deploy.yaml文件有个nodeName字段,这个就是用来指定创建的这个prometheus的pod调度到哪个节点上,我们这里让nodeName=node1,也即是让pod调度到node1节点上,因为node1节点我们创建了数据目录/data,所以大家记住:你在k8s集群的哪个节点创建/data,就让pod调度到哪个节点。 #通过kubectl apply更新prometheus [root@master1 ~]# kubectl apply -f prometheus-deploy.yaml deployment.apps/prometheus-server created #查看prometheus是否部署成功 [root@master1 ~]# kubectl get pods -n monitor-sa NAME READY STATUS RESTARTS AGE node-exporter-7cjhw 1/1 Running 0 6m33s node-exporter-8m2fp 1/1 Running 0 6m33s node-exporter-c6sdq 1/1 Running 0 6m33s prometheus-server-6fffccc6c9-bhbpz 1/1 Running 0 26s 给prometheus pod创建一个service prometheus-svc.yaml文件在课件,可上传到k8s的控制节点,内容如下: cat prometheus-svc.yaml --- apiVersion: v1 kind: Service metadata: name: prometheus namespace: monitor-sa labels: app: prometheus spec: type: NodePort ports: - port: 9090 targetPort: 9090 protocol: TCP selector: app: prometheus component: server #通过kubectl apply 更新service [root@master1 ~]# kubectl apply -f prometheus-svc.yaml service/prometheus created #查看service在物理机映射的端口 [root@master1 ~]# kubectl get svc -n monitor-sa NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE prometheus NodePort 10.103.98.225 <none> 9090:30009/TCP 27s 通过上面可以看到service在宿主机上映射的端口是30009,这样我们访问k8s集群的控制节点的ip:30009,就可以访问到prometheus的web ui界面了 #访问prometheus web ui界面 火狐浏览器输入如下地址: http://192.168.40.130:30009/graph 可看到如下页面:
- 1.4 安装和配置可视化UI界面Grafana
- 安装Grafana需要的镜像heapster-grafana-amd64_v5_0_4.tar.gz在课件里,把镜像上传到k8s的各个控制节点和k8s的各个工作节点,然后在各个节点手动解压:
- docker load -i heapster-grafana-amd64_v5_0_4.tar.gz
- grafana.yaml文件在课件里,可上传到k8s的控制节点,内容如下:
- [root@master1 ~]# cat grafana.yaml
- apiVersion: apps/v1
- kind: Deployment
- metadata:
- name: monitoring-grafana
- namespace: kube-system
- spec:
- replicas: 1
- selector:
- matchLabels:
- task: monitoring
- k8s-app: grafana
- template:
- metadata:
- labels:
- task: monitoring
- k8s-app: grafana
- spec:
- containers:
- - name: grafana
- image: k8s.gcr.io/heapster-grafana-amd64:v5.0.4
- ports:
- - containerPort: 3000
- protocol: TCP
- volumeMounts:
- - mountPath: /etc/ssl/certs
- name: ca-certificates
- readOnly: true
- - mountPath: /var
- name: grafana-storage
- env:
- - name: INFLUXDB_HOST
- value: monitoring-influxdb
- - name: GF_SERVER_HTTP_PORT
- value: "3000"
- # The following env variables are required to make Grafana accessible via
- # the kubernetes api-server proxy. On production clusters, we recommend
- # removing these env variables, setup auth for grafana, and expose the grafana
- # service using a LoadBalancer or a public IP.
- - name: GF_AUTH_BASIC_ENABLED
- value: "false"
- - name: GF_AUTH_ANONYMOUS_ENABLED
- value: "true"
- - name: GF_AUTH_ANONYMOUS_ORG_ROLE
- value: Admin
- - name: GF_SERVER_ROOT_URL
- # If you're only using the API Server proxy, set this value instead:
- # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
- value: /
- volumes:
- - name: ca-certificates
- hostPath:
- path: /etc/ssl/certs
- - name: grafana-storage
- emptyDir: {}
- ---
- apiVersion: v1
- kind: Service
- metadata:
- labels:
- # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
- # If you are NOT using this as an addon, you should comment out this line.
- kubernetes.io/cluster-service: 'true'
- kubernetes.io/name: monitoring-grafana
- name: monitoring-grafana
- namespace: kube-system
- spec:
- # In a production setup, we recommend accessing Grafana through an external Loadbalancer
- # or through a public IP.
- # type: LoadBalancer
- # You could also use NodePort to expose the service at a randomly-generated port
- # type: NodePort
- ports:
- - port: 80
- targetPort: 3000
- selector:
- k8s-app: grafana
- type: NodePort
- #更新yaml文件
- [root@master1 ~]# kubectl apply -f grafana.yaml
- deployment.apps/monitoring-grafana created
- service/monitoring-grafana created
- #验证是否安装成功
- [root@master1 ~]# kubectl get pods -n kube-system| grep monitor
- monitoring-grafana-675798bf47-4rp2b 1/1 Running 0
- #查看grafana前端的service
- [root@master1 ~]# kubectl get svc -n kube-system | grep grafana
- monitoring-grafana NodePort 10.100.56.76 <none> 80:30989/TCP
- #登陆grafana,在浏览器访问
- 192.168.40.130:30989
- 可看到如下界面:
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
#配置grafana界面
开始配置grafana的web界面:
选择Create your first data source
出现如下
Name:Prometheus
Type:Prometheus
HTTP 处的URL如下:
http://prometheus.monitor-sa.svc:9090
配置好的整体页面如下:
点击左下角Save& Test,出现如下Data source is working,说明prometheus数据源成功的被grafana接入了:
导入监控模板,可在如下链接搜索
https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes
可直接导入node_exporter.json监控模板,这个可以把node节点指标显示出来
node_exporter.json在课件里,也可直接导入docker_rev1.json,这个可以把容器资源指标显示出来,node_exporter.json和docker_rev1.json都在课件里
怎么导入监控模板,按如下步骤
上面Save& Test测试没问题之后,就可以返回Grafana主页面
点击左侧+号下面的Import
出现如下界面:
选择Upload json file,出现如下
选择一个本地的json文件,我们选择的是上面让大家下载的node_exporter.json这个文件,选择之后出现如下:
注:箭头标注的地方Name后面的名字是node_exporter.json定义的
Prometheus后面需要变成Prometheus,然后再点击Import,就可以出现如下界面:
导入docker_rev1.json监控模板,步骤和上面导入node_exporter.json步骤一样,导入之后显示如下:
- 1.5 kube-state-metrics组件解读
- 1.5.1 什么是kube-state-metrics?
- kube-state-metrics通过监听API Server生成有关资源对象的状态指标,比如Deployment、Node、Pod,需要注意的是kube-state-metrics只是简单的提供一个metrics数据,并不会存储这些指标数据,所以我们可以使用Prometheus来抓取这些数据然后存储,主要关注的是业务相关的一些元数据,比如Deployment、Pod、副本状态等;调度了多少个replicas?现在可用的有几个?多少个Pod是running/stopped/terminated状态?Pod重启了多少次?我有多少job在运行中。
- 1.5.2 安装和配置kube-state-metrics
- 创建sa,并对sa授权
- 在k8s的控制节点生成一个kube-state-metrics-rbac.yaml文件,kube-state-metrics-rbac.yaml文件在课件,大家自行下载到k8s的控制节点即可,内容如下:
- [root@master1 ~]# cat kube-state-metrics-rbac.yaml
- ---
- apiVersion: v1
- kind: ServiceAccount
- metadata:
- name: kube-state-metrics
- namespace: kube-system
- ---
- apiVersion: rbac.authorization.k8s.io/v1
- kind: ClusterRole
- metadata:
- name: kube-state-metrics
- rules:
- - apiGroups: [""]
- resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]
- verbs: ["list", "watch"]
- - apiGroups: ["extensions"]
- resources: ["daemonsets", "deployments", "replicasets"]
- verbs: ["list", "watch"]
- - apiGroups: ["apps"]
- resources: ["statefulsets"]
- verbs: ["list", "watch"]
- - apiGroups: ["batch"]
- resources: ["cronjobs", "jobs"]
- verbs: ["list", "watch"]
- - apiGroups: ["autoscaling"]
- resources: ["horizontalpodautoscalers"]
- verbs: ["list", "watch"]
- ---
- apiVersion: rbac.authorization.k8s.io/v1
- kind: ClusterRoleBinding
- metadata:
- name: kube-state-metrics
- roleRef:
- apiGroup: rbac.authorization.k8s.io
- kind: ClusterRole
- name: kube-state-metrics
- subjects:
- - kind: ServiceAccount
- name: kube-state-metrics
- namespace: kube-system
- 通过kubectl apply更新yaml文件
- [root@master1 ~]# kubectl apply -f kube-state-metrics-rbac.yaml
- serviceaccount/kube-state-metrics created
- clusterrole.rbac.authorization.k8s.io/kube-state-metrics created
- clusterrolebinding.rbac.authorization.k8s.io/kube-state-metrics created
- 安装kube-state-metrics组件
- 安装kube-state-metrics组件需要的镜像在课件,可上传到k8s各个工作节点,手动解压:
- docker load -i kube-state-metrics_1_9_0.tar.gz
- 在k8s的master1节点生成一个kube-state-metrics-deploy.yaml文件,kube-state-metrics-deploy.yaml在课件,可自行下载,内容如下:
- [root@master1 ~]# cat kube-state-metrics-deploy.yaml
- apiVersion: apps/v1
- kind: Deployment
- metadata:
- name: kube-state-metrics
- namespace: kube-system
- spec:
- replicas: 1
- selector:
- matchLabels:
- app: kube-state-metrics
- template:
- metadata:
- labels:
- app: kube-state-metrics
- spec:
- serviceAccountName: kube-state-metrics
- containers:
- - name: kube-state-metrics
- image: quay.io/coreos/kube-state-metrics:v1.9.0
- ports:
- - containerPort: 8080
- 通过kubectl apply更新yaml文件
- [root@master1 ~]# kubectl apply -f kube-state-metrics-deploy.yaml
- deployment.apps/kube-state-metrics created
- 查看kube-state-metrics是否部署成功
- [root@master1 ~]# kubectl get pods -n kube-system -l app=kube-state-metrics
- NAME READY STATUS RESTARTS AGE
- kube-state-metrics-58d4957bc5-9thsw 1/1 Running 0 30s
- 创建service
- 在k8s的控制节点生成一个kube-state-metrics-svc.yaml文件,kube-state-metrics-svc.yaml文件在课件,可上传到k8s的控制节点,内容如下:
- [root@master1 ~]# cat kube-state-metrics-svc.yaml
- apiVersion: v1
- kind: Service
- metadata:
- annotations:
- prometheus.io/scrape: 'true'
- name: kube-state-metrics
- namespace: kube-system
- labels:
- app: kube-state-metrics
- spec:
- ports:
- - name: kube-state-metrics
- port: 8080
- protocol: TCP
- selector:
- app: kube-state-metrics
- 通过kubectl apply更新yaml
- [root@master1 ~]# kubectl apply -f kube-state-metrics-svc.yaml
- service/kube-state-metrics created
- 查看service是否创建成功
- [root@master1 ~]# kubectl get svc -n kube-system | grep kube-state-metrics
- kube-state-metrics ClusterIP 10.105.160.224 <none> 8080/TCP
-
-
- 在grafana web界面导入Kubernetes Cluster (Prometheus)-1577674936972.json和Kubernetes cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json,Kubernetes Cluster (Prometheus)-1577674936972.json和Kubernetes cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json文件在课件
- 导入Kubernetes Cluster (Prometheus)-1577674936972.json之后出现如下页面
-
-
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
在grafana web界面导入Kubernetes cluster monitoring(via Prometheus) (k8s 1.16)-1577691996738.json,出现如下页面
1.6 安装和配置Alertmanager-发送报警到qq邮箱 在k8s的master1节点创建alertmanager-cm.yaml文件,alertmanager-cm.yaml文件在课件,可直接从课件传到k8s的master1节点,内容如下: [root@master1 ~]# cat alertmanager-cm.yaml kind: ConfigMap apiVersion: v1 metadata: name: alertmanager namespace: monitor-sa data: alertmanager.yml: |- global: resolve_timeout: 1m smtp_smarthost: 'smtp.163.com:25' smtp_from: '1501157****@163.com' smtp_auth_username: '1501157****' smtp_auth_password: ' FLWYKIDBNBAIFFXV smtp_require_tls: false route: #用于配置告警分发策略 group_by: [alertname] # 采用哪个标签来作为分组依据 group_wait: 10s # 组告警等待时间。也就是告警产生后等待10s,如果有同组告警一起发出 group_interval: 10s # 两组告警的间隔时间 repeat_interval: 10m # 重复告警的间隔时间,减少相同邮件的发送频率 receiver: default-receiver # 设置默认接收人 receivers: - name: 'default-receiver' email_configs: - to: '1980570***@qq.com' send_resolved: true alertmanager配置文件解释说明: smtp_smarthost: 'smtp.163.com:25' #用于发送邮件的邮箱的SMTP服务器地址+端口 smtp_from: '1501157****@163.com' #这是指定从哪个邮箱发送报警 smtp_auth_username: '1501157****' #这是发送邮箱的认证用户,不是邮箱名 smtp_auth_password: 'BDBPRMLNZGKWRFJP' #这是发送邮箱的授权码而不是登录密码 email_configs: - to: '1980570***@qq.com' #to后面指定发送到哪个邮箱,我发送到我的qq邮箱,大家需要写自己的邮箱地址,不应该跟smtp_from的邮箱名字重复 #通过kubectl apply 更新文件 [root@master1 ~]# kubectl apply -f alertmanager-cm.yaml configmap/alertmanager created 在k8s的master1节点生成一个prometheus-alertmanager-cfg.yaml文件,prometheus-alertmanager-cfg.yaml文件在课件,上传到k8s的master1节点,内容如下: [root@master1 ~]# cat prometheus-alertmanager-cfg.yaml kind: ConfigMap apiVersion: v1 metadata: labels: app: prometheus name: prometheus-config namespace: monitor-sa data: prometheus.yml: | rule_files: - /etc/prometheus/rules.yml alerting: alertmanagers: - static_configs: - targets: ["localhost:9093"] global: scrape_interval: 15s scrape_timeout: 10s evaluation_interval: 1m scrape_configs: - job_name: 'kubernetes-node' kubernetes_sd_configs: - role: node relabel_configs: - source_labels: [__address__] regex: '(.*):10250' replacement: '${1}:9100' target_label: __address__ action: replace - action: labelmap regex: __meta_kubernetes_node_label_(.+) - job_name: 'kubernetes-node-cadvisor' kubernetes_sd_configs: - role: node scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor - job_name: 'kubernetes-apiserver' kubernetes_sd_configs: - role: endpoints scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] action: keep regex: default;kubernetes;https - job_name: 'kubernetes-service-endpoints' kubernetes_sd_configs: - role: endpoints relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port] action: replace target_label: __address__ regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] action: replace target_label: kubernetes_name - job_name: kubernetes-pods kubernetes_sd_configs: - role: pod relabel_configs: - action: keep regex: true source_labels: - __meta_kubernetes_pod_annotation_prometheus_io_scrape - action: replace regex: (.+) source_labels: - __meta_kubernetes_pod_annotation_prometheus_io_path target_label: __metrics_path__ - action: replace regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 source_labels: - __address__ - __meta_kubernetes_pod_annotation_prometheus_io_port target_label: __address__ - action: labelmap regex: __meta_kubernetes_pod_label_(.+) - action: replace source_labels: - __meta_kubernetes_namespace target_label: kubernetes_namespace - action: replace source_labels: - __meta_kubernetes_pod_name target_label: kubernetes_pod_name - job_name: 'kubernetes-schedule' scrape_interval: 5s static_configs: - targets: ['192.168.40.130:10251'] - job_name: 'kubernetes-controller-manager' scrape_interval: 5s static_configs: - targets: ['192.168.40.130:10252'] - job_name: 'kubernetes-kube-proxy' scrape_interval: 5s static_configs: - targets: ['192.168.40.130:10249','192.168.40.131:10249'] - job_name: 'kubernetes-etcd' scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key scrape_interval: 5s static_configs: - targets: ['192.168.40.130:2379'] rules.yml: | groups: - name: example rules: - alert: kube-proxy的cpu使用率大于80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%" - alert: kube-proxy的cpu使用率大于90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%" - alert: scheduler的cpu使用率大于80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%" - alert: scheduler的cpu使用率大于90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%" - alert: controller-manager的cpu使用率大于80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%" - alert: controller-manager的cpu使用率大于90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%" - alert: apiserver的cpu使用率大于80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%" - alert: apiserver的cpu使用率大于90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%" - alert: etcd的cpu使用率大于80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%" - alert: etcd的cpu使用率大于90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%" - alert: kube-state-metrics的cpu使用率大于80% expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%" value: "{{ $value }}%" threshold: "80%" - alert: kube-state-metrics的cpu使用率大于90% expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%" value: "{{ $value }}%" threshold: "90%" - alert: coredns的cpu使用率大于80% expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%" value: "{{ $value }}%" threshold: "80%" - alert: coredns的cpu使用率大于90% expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%" value: "{{ $value }}%" threshold: "90%" - alert: kube-proxy打开句柄数>600 expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kube-proxy打开句柄数>1000 expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: kubernetes-schedule打开句柄数>600 expr: process_open_fds{job=~"kubernetes-schedule"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kubernetes-schedule打开句柄数>1000 expr: process_open_fds{job=~"kubernetes-schedule"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: kubernetes-controller-manager打开句柄数>600 expr: process_open_fds{job=~"kubernetes-controller-manager"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kubernetes-controller-manager打开句柄数>1000 expr: process_open_fds{job=~"kubernetes-controller-manager"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: kubernetes-apiserver打开句柄数>600 expr: process_open_fds{job=~"kubernetes-apiserver"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kubernetes-apiserver打开句柄数>1000 expr: process_open_fds{job=~"kubernetes-apiserver"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: kubernetes-etcd打开句柄数>600 expr: process_open_fds{job=~"kubernetes-etcd"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kubernetes-etcd打开句柄数>1000 expr: process_open_fds{job=~"kubernetes-etcd"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: coredns expr: process_open_fds{k8s_app=~"kube-dns"} > 600 for: 2s labels: severity: warnning annotations: description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600" value: "{{ $value }}" - alert: coredns expr: process_open_fds{k8s_app=~"kube-dns"} > 1000 for: 2s labels: severity: critical annotations: description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000" value: "{{ $value }}" - alert: kube-proxy expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: scheduler expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: kubernetes-controller-manager expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: kubernetes-apiserver expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: kubernetes-etcd expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: kube-dns expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: HttpRequestsAvg expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m])) > 1000 for: 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000" value: "{{ $value }}" threshold: "1000" - alert: Pod_restarts expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0 for: 2s labels: severity: warnning annotations: description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的" value: "{{ $value }}" threshold: "0" - alert: Pod_waiting expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1 for: 2s labels: team: admin annotations: description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中" value: "{{ $value }}" threshold: "1" - alert: Pod_terminated expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1 for: 2s labels: team: admin annotations: description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除" value: "{{ $value }}" threshold: "1" - alert: Etcd_leader expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0 for: 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader" value: "{{ $value }}" threshold: "0" - alert: Etcd_leader_changes expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0 for: 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变" value: "{{ $value }}" threshold: "0" - alert: Etcd_failed expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0 for: 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败" value: "{{ $value }}" threshold: "0" - alert: Etcd_db_total_size expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000 for: 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G" value: "{{ $value }}" threshold: "10G" - alert: Endpoint_ready expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1 for: 2s labels: team: admin annotations: description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用" value: "{{ $value }}" threshold: "1" - name: 物理节点状态-监控告警 rules: - alert: 物理节点cpu使用率 expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90 for: 2s labels: severity: ccritical annotations: summary: "{{ $labels.instance }}cpu使用率过高" description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" - alert: 物理节点内存使用率 expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90 for: 2s labels: severity: critical annotations: summary: "{{ $labels.instance }}内存使用率过高" description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理" - alert: InstanceDown expr: up == 0 for: 2s labels: severity: critical annotations: summary: "{{ $labels.instance }}: 服务器宕机" description: "{{ $labels.instance }}: 服务器延时超过2分钟" - alert: 物理节点磁盘的IO性能 expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!" description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})" - alert: 入网流量带宽 expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 流入网络带宽过高!" description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}" - alert: 出网流量带宽 expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 流出网络带宽过高!" description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}" - alert: TCP会话 expr: node_netstat_Tcp_CurrEstab > 1000 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!" description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)" - alert: 磁盘容量 expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!" description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)" 注意:配置文件解释说明 - job_name: 'kubernetes-schedule' scrape_interval: 5s static_configs: - targets: ['192.168.40.130:10251'] #master1节点的ip:schedule端口 - job_name: 'kubernetes-controller-manager' scrape_interval: 5s static_configs: - targets: ['192.168.40.130:10252'] #master1节点的ip:controller-manager端口 - job_name: 'kubernetes-kube-proxy' scrape_interval: 5s static_configs: - targets: ['192.168.40.130:10249','192.168.40.131:10249'] #master1和node1节点的ip:kube-proxy端口 - job_name: 'kubernetes-etcd' scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key scrape_interval: 5s static_configs: - targets: ['192.168.40.130:2379'] #master1节点的ip:etcd端口 #更新资源清单文件 [root@master1 ~]# kubectl delete -f prometheus-cfg.yaml configmap "prometheus-config" deleted [root@master1 ~]# kubectl apply -f prometheus-alertmanager-cfg.yaml configmap/prometheus-config created 安装prometheus和alertmanager 需要把alertmanager.tar.gz镜像包上传的k8s的各个节点,手动解压: docker load -i alertmanager.tar.gz 在k8s的master1节点生成一个prometheus-alertmanager-deploy.yaml文件,prometheus-alertmanager-deploy.yaml文件在课件里,可自行上传到k8s master1节点上,内容如下: [root@master1 ~]# cat prometheus-alertmanager-deploy.yaml --- apiVersion: apps/v1 kind: Deployment metadata: name: prometheus-server namespace: monitor-sa labels: app: prometheus spec: replicas: 1 selector: matchLabels: app: prometheus component: server #matchExpressions: #- {key: app, operator: In, values: [prometheus]} #- {key: component, operator: In, values: [server]} template: metadata: labels: app: prometheus component: server annotations: prometheus.io/scrape: 'false' spec: nodeName: node1 serviceAccountName: monitor containers: - name: prometheus image: prom/prometheus:v2.2.1 imagePullPolicy: IfNotPresent command: - "/bin/prometheus" args: - "--config.file=/etc/prometheus/prometheus.yml" - "--storage.tsdb.path=/prometheus" - "--storage.tsdb.retention=24h" - "--web.enable-lifecycle" ports: - containerPort: 9090 protocol: TCP volumeMounts: - mountPath: /etc/prometheus name: prometheus-config - mountPath: /prometheus/ name: prometheus-storage-volume - name: k8s-certs mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ - name: alertmanager image: prom/alertmanager:v0.14.0 imagePullPolicy: IfNotPresent args: - "--config.file=/etc/alertmanager/alertmanager.yml" - "--log.level=debug" ports: - containerPort: 9093 protocol: TCP name: alertmanager volumeMounts: - name: alertmanager-config mountPath: /etc/alertmanager - name: alertmanager-storage mountPath: /alertmanager - name: localtime mountPath: /etc/localtime volumes: - name: prometheus-config configMap: name: prometheus-config - name: prometheus-storage-volume hostPath: path: /data type: Directory - name: k8s-certs secret: secretName: etcd-certs - name: alertmanager-config configMap: name: alertmanager - name: alertmanager-storage hostPath: path: /data/alertmanager type: DirectoryOrCreate - name: localtime hostPath: path: /usr/share/zoneinfo/Asia/Shanghai 注意: 配置文件指定了nodeName: node1,这个位置要写你自己环境的node节点名字 生成一个etcd-certs,这个在部署prometheus需要 [root@master1 ~]# kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt 通过kubectl apply更新yaml文件 [root@master1 ~]# kubectl delete -f prometheus-deploy.yaml [root@master1 ~]# kubectl apply -f prometheus-alertmanager-deploy.yaml deployment.apps/prometheus-server created #查看prometheus是否部署成功 kubectl get pods -n monitor-sa | grep prometheus 显示如下,可看到pod状态是running,说明prometheus部署成功 prometheus-server-6c46df5b6-4l9b4 2/2 Running 0 38s 在k8s的master1节点生成一个alertmanager-svc.yaml文件,alertmanager-svc.yaml文件在课件里,可以手动上传到k8s的master1节点,内容如下: [root@master1 ~]# cat alertmanager-svc.yaml --- apiVersion: v1 kind: Service metadata: labels: name: prometheus kubernetes.io/cluster-service: 'true' name: alertmanager namespace: monitor-sa spec: ports: - name: alertmanager nodePort: 30066 port: 9093 protocol: TCP targetPort: 9093 selector: app: prometheus sessionAffinity: None type: NodePort #通过kubectl apply 更新yaml文件 [root@master1 ~]# kubectl apply -f alertmanager-svc.yaml service/alertmanager created #查看service在物理机上映射的端口 [root@master1 ~]# kubectl get svc -n monitor-sa NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE alertmanager NodePort 10.98.142.161 <none> 9093:30066/TCP 56s prometheus NodePort 10.103.98.225 <none> 9090:30009/TCP 56m 注意:上面可以看到prometheus的service暴漏的端口是30009,alertmanager的service暴露的端口是30066 访问prometheus的web界面 点击status->targets,可看到如下
从上面可以发现kubernetes-controller-manager和kubernetes-schedule都显示连接不上对应的端口
- 可按如下方法处理;
- vim /etc/kubernetes/manifests/kube-scheduler.yaml
- 修改如下内容:
- 把--bind-address=127.0.0.1变成--bind-address=192.168.40.130
- 把httpGet:字段下的hosts由127.0.0.1变成192.168.40.130
- 把—port=0删除
-
-
- #注意:
- 192.168.40.130是k8s的控制节点master1节点ip
-
-
- vim /etc/kubernetes/manifests/kube-controller-manager.yaml
- 把--bind-address=127.0.0.1变成--bind-address=192.168.40.130
- 把httpGet:字段下的hosts由127.0.0.1变成192.168.40.130
- 把—port=0删除
-
-
- 修改之后在k8s各个节点执行
- systemctl restart kubelet
-
-
- kubectl get cs
- 显示如下:
- NAME STATUS MESSAGE ERROR
- controller-manager Healthy ok
- scheduler Healthy ok
- etcd-0 Healthy {"health":"true"}
-
-
- ss -antulp | grep :10251
- ss -antulp | grep :10252
- 可以看到相应的端口已经被物理机监听了
- 点击status->targets,可看到如下
-
-
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
kubernetes-kube-proxy显示如下:
- 是因为kube-proxy默认端口10249是监听在127.0.0.1上的,需要改成监听到物理节点上,按如下方法修改,线上建议在安装k8s的时候就做修改,这样风险小一些:
- kubectl edit configmap kube-proxy -n kube-system
- 把metricsBindAddress这段修改成metricsBindAddress: 0.0.0.0:10249
- 然后重新启动kube-proxy这个pod
- kubectl get pods -n kube-system | grep kube-proxy |awk '{print $1}' | xargs kubectl delete pods -n kube-system
- ss -antulp |grep :10249
- 可显示如下
- [root@k8s-master ~]# ss -antulp | grep :10249
- tcp LISTEN 0 128 [::]:10249
-
-
- 点击Alerts,可看到如下
-
-
把kubernetes-etcd展开,可看到如下:
FIRING表示prometheus已经将告警发给alertmanager,在Alertmanager 中可以看到有一个 alert。
登录到alertmanagerweb界面,浏览器输入192.168.40.130:30066,显示如下
这样我在我的qq邮箱,1980570***@qq.com就可以收到报警了,如下
修改prometheus任何一个配置文件之后,可通过kubectl apply使配置生效,执行顺序如下:
kubectldelete -f alertmanager-cm.yaml
kubectlapply -f alertmanager-cm.yaml
kubectldelete -f prometheus-alertmanager-cfg.yaml
kubectlapply -f prometheus-alertmanager-cfg.yaml
kubectldelete -f prometheus-alertmanager-deploy.yaml
kubectl apply -f prometheus-alertmanager-deploy.yaml
END
精彩文章推荐
从0开始轻松玩转k8s,助力企业实现智能化转型+世界500强实战项目汇总
Docker+k8s+DevOps+Istio+Rancher+CKA+k8s故障排查训练营:
https://edu.51cto.com/topic/4735.html?qd=xglj
点亮,服务器10年不宕机
点击阅读原文 | 了解更多
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。