当前位置:   article > 正文

手写数字识别代码(可直接使用)_手写数字识别代码 不用torch

手写数字识别代码 不用torch

       搭建一个简单的神经网络实现手写数字识别,是对《深度学习之PyTorch实战计算机视觉》一书中的项目进行的复现。

       这里使用的GPU进行运算的,如果无法使用GPU运行,把代码中的.cuda()删掉就好。

  1. import torch
  2. from torchvision import datasets, transforms
  3. import torchvision.transforms
  4. from torch.autograd import Variable
  5. import matplotlib.pyplot as plt
  6. transform = transforms.Compose([transforms.ToTensor(),
  7. transforms.Lambda(lambda x: x.repeat(3, 1, 1)),
  8. transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
  9. data_train = datasets.MNIST(root = "./data/",
  10. transform = transform,
  11. train = True,
  12. download = True)
  13. data_test = datasets.MNIST(root="./data/",
  14. transform = transform,
  15. train = False)
  16. data_loader_train = torch.utils.data.DataLoader(dataset = data_train,
  17. batch_size = 64,
  18. shuffle = True)
  19. data_loader_test = torch.utils.data.DataLoader(dataset = data_test,
  20. batch_size = 64,
  21. shuffle = True)
  22. images, labels = next(iter(data_loader_train))
  23. img = torchvision.utils.make_grid(images)
  24. img = img.numpy().transpose(1, 2, 0)
  25. std = [0.5, 0.5, 0.5]
  26. mean = [0.5, 0.5, 0.5]
  27. img = img*std+mean
  28. # print([labels[i] for i in range(64)])
  29. # plt.imshow(img)
  30. # plt.show()
  31. class Model(torch.nn.Module):
  32. def __init__(self):
  33. super(Model, self).__init__()
  34. self.conv1=torch.nn.Sequential(
  35. torch.nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
  36. torch.nn.ReLU(),
  37. torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
  38. torch.nn.ReLU(),
  39. torch.nn.MaxPool2d(stride=2, kernel_size=2)
  40. )
  41. self.dense=torch.nn.Sequential(
  42. torch.nn.Linear(14*14*128, 1024),
  43. torch.nn.ReLU(),
  44. torch.nn.Dropout(p=0.5),
  45. torch.nn.Linear(1024, 10)
  46. )
  47. def forward(self, x):
  48. x = self.conv1(x)
  49. x = x.view(-1, 14*14*128)
  50. x = self.dense(x)
  51. return x
  52. model = Model()
  53. model = model.cuda() #转GPU跑
  54. cost = torch.nn.CrossEntropyLoss()
  55. optimizer = torch.optim.Adam(model.parameters())
  56. n_epochs = 5
  57. for epoch in range(n_epochs):
  58. running_loss = 0.0
  59. running_correct = 0
  60. print("Epoch {}/{}".format(epoch, n_epochs))
  61. print("-"*10)
  62. for data in data_loader_train:
  63. X_train, Y_train = data
  64. X_train, Y_train = Variable(X_train.cuda()), Variable(Y_train.cuda())
  65. outputs = model(X_train)
  66. _, pred = torch.max(outputs.data, 1)
  67. optimizer.zero_grad()
  68. loss = cost(outputs, Y_train)
  69. loss.backward()
  70. optimizer.step()
  71. running_loss += loss.item()
  72. running_correct += torch.sum(pred == Y_train.data)
  73. testing_correct = 0
  74. for data in data_loader_test:
  75. X_test, Y_test = data
  76. X_test, Y_test = Variable(X_test.cuda()), Variable(Y_test.cuda())
  77. outputs = model(X_test)
  78. _, pred = torch.max(outputs.data, 1)
  79. testing_correct += torch.sum(pred == Y_test.data)
  80. print("Loss is:{:.4f}, Train Accuracy is:{:.4f}%, Test Accuracy is:{:.4f}%"
  81. .format(running_loss/len(data_train),
  82. 100*running_correct/len(data_train),
  83. 100*testing_correct/len(data_test)))

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/468912
推荐阅读
相关标签
  

闽ICP备14008679号