赞
踩
搭建一个简单的神经网络实现手写数字识别,是对《深度学习之PyTorch实战计算机视觉》一书中的项目进行的复现。
这里使用的GPU进行运算的,如果无法使用GPU运行,把代码中的.cuda()删掉就好。
- import torch
- from torchvision import datasets, transforms
- import torchvision.transforms
- from torch.autograd import Variable
- import matplotlib.pyplot as plt
-
- transform = transforms.Compose([transforms.ToTensor(),
- transforms.Lambda(lambda x: x.repeat(3, 1, 1)),
- transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
-
- data_train = datasets.MNIST(root = "./data/",
- transform = transform,
- train = True,
- download = True)
- data_test = datasets.MNIST(root="./data/",
- transform = transform,
- train = False)
- data_loader_train = torch.utils.data.DataLoader(dataset = data_train,
- batch_size = 64,
- shuffle = True)
- data_loader_test = torch.utils.data.DataLoader(dataset = data_test,
- batch_size = 64,
- shuffle = True)
-
- images, labels = next(iter(data_loader_train))
- img = torchvision.utils.make_grid(images)
- img = img.numpy().transpose(1, 2, 0)
- std = [0.5, 0.5, 0.5]
- mean = [0.5, 0.5, 0.5]
- img = img*std+mean
- # print([labels[i] for i in range(64)])
- # plt.imshow(img)
- # plt.show()
-
- class Model(torch.nn.Module):
-
- def __init__(self):
- super(Model, self).__init__()
- self.conv1=torch.nn.Sequential(
- torch.nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
- torch.nn.ReLU(),
- torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
- torch.nn.ReLU(),
- torch.nn.MaxPool2d(stride=2, kernel_size=2)
- )
-
- self.dense=torch.nn.Sequential(
- torch.nn.Linear(14*14*128, 1024),
- torch.nn.ReLU(),
- torch.nn.Dropout(p=0.5),
- torch.nn.Linear(1024, 10)
- )
-
- def forward(self, x):
- x = self.conv1(x)
- x = x.view(-1, 14*14*128)
- x = self.dense(x)
- return x
-
- model = Model()
- model = model.cuda() #转GPU跑
- cost = torch.nn.CrossEntropyLoss()
- optimizer = torch.optim.Adam(model.parameters())
- n_epochs = 5
-
- for epoch in range(n_epochs):
- running_loss = 0.0
- running_correct = 0
- print("Epoch {}/{}".format(epoch, n_epochs))
- print("-"*10)
- for data in data_loader_train:
- X_train, Y_train = data
- X_train, Y_train = Variable(X_train.cuda()), Variable(Y_train.cuda())
- outputs = model(X_train)
- _, pred = torch.max(outputs.data, 1)
- optimizer.zero_grad()
- loss = cost(outputs, Y_train)
- loss.backward()
- optimizer.step()
- running_loss += loss.item()
- running_correct += torch.sum(pred == Y_train.data)
- testing_correct = 0
- for data in data_loader_test:
- X_test, Y_test = data
- X_test, Y_test = Variable(X_test.cuda()), Variable(Y_test.cuda())
- outputs = model(X_test)
- _, pred = torch.max(outputs.data, 1)
- testing_correct += torch.sum(pred == Y_test.data)
- print("Loss is:{:.4f}, Train Accuracy is:{:.4f}%, Test Accuracy is:{:.4f}%"
- .format(running_loss/len(data_train),
- 100*running_correct/len(data_train),
- 100*testing_correct/len(data_test)))
-

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。