赞
踩
给出一个数组,返回所有可能的全排列。其中“全排列”的定义如下:
将n个元素按照一定的顺序排列起来,所有的排列情况的集合叫全排列
全排列问题的整体思路和其他回溯问题相仿,但去重操作和其他问题有所不同,这是由其自身性质决定的:
因为不能使用startIndex修剪搜索空间,每层遍历都要从nums[0]遍历到nums[nums.size()-1]。
路径中的状态不需要记录到结果数组中,终止条件恒为 path.size() == nums.size()
由于同一条路径不能重复取同一个元素,所以必须进行树枝去重。在以往的组合、切割和子集问题中,我们通过使用startIndex限制剩余树枝的搜索空间来完成对同一树枝上元素的去重,但这种去重方法将压减右侧树枝的深度,导致除最左侧树枝以外的所有树枝无法满足路径长度等于原集合大小的条件。此外,这种去重方法也忽视了排列问题解的有序性(例:若原集合为[7, 1],则解集中[7, 1] 和[1, 7]将无法同时出现,因为当右边的树枝取到1时,它以下的路径的取值范围已经变成了[],元素7已被剪除)
为了进行树枝去重并保证每一条路径都能取到所有元素,需要建立一个数组visited[]存储每一路径中各个元素被使用的情况。
题目说明:
给定一个不含重复数字的数组 nums ,返回其所有可能的全排列 。你可以按任意顺序返回答案。
示例:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
提示:
1 <= nums.length <= 6
-10 <= nums[i] <= 10
nums 中的所有整数互不相同
代码示例:
class Solution { public: void backtracking(vector<int> nums, vector<bool>& visited) { if(path.size() == nums.size()) { ans.push_back(path); return; } for(int i = 0; i < nums.size(); i++) { if(visited[i]) { continue; } path.push_back(nums[i]); visited[i] = true; backtracking(nums, visited); path.pop_back(); visited[i] = false; } return; } vector<vector<int>> permute(vector<int>& nums) { vector<bool> visited(nums.size(), false); backtracking(nums, visited); return ans; } private: vector<vector<int>> ans; vector<int> path; };
使用条件: 原集合中有重复元素
全排列问题对树层的去重操作与组合问题的思路相同(详情可以参考《回溯算法及其应用》中的40.组合总和II(LeetCode))
仍然使用visited[]数组去重,但在此之前要先将原集合进行排序,保证所有相同值的元素相邻。然后通过以下语句完成树层去重。
if(i > 0 && nums[i] == nums[i-1] && visited[i-1] == false) {
// 如果有相同值的上一位元素不是在本树枝上被遍历的,说明在同一层上已被取过,不可重复取值
continue;
}
题目说明:
给定一个可包含重复数字的数组 nums ,返回其所有可能的全排列 。你可以按任意顺序返回答案。
示例:
输入:nums = [1,1,2]
输出:
[[1,1,2],
[1,2,1],
[2,1,1]]
提示:
1 <= nums.length <= 8
-10 <= nums[i] <= 10
代码示例:
class Solution { public: void backtracking(vector<int> nums, vector<bool>& visited) { if(path.size() == nums.size()) { ans.push_back(path); return; } for(int i = 0; i < nums.size(); i++) { if(i > 0 && nums[i-1] == nums[i] && visited[i-1] == false) { // 树层去重 continue; } if(visited[i] == false) { // 树枝去重 visited[i] = true; path.push_back(nums[i]); backtracking(nums, visited); path.pop_back(); visited[i] = false; } } } vector<vector<int>> permuteUnique(vector<int>& nums) { vector<bool> visited(nums.size(), false); sort(nums.begin(), nums.end()); backtracking(nums, visited); return ans; } private: vector<int> path; vector<vector<int>> ans; };
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。