当前位置:   article > 正文

简单so加密app案例(一)_apk 那个so负责加密

apk 那个so负责加密

前言

在写so的加密和解密之前,我们需要具备的是对so文件(elf文件)的格式解析一定要有足够的熟悉!

elf文件格式解析文章:

ELF探究 之 ELF文件介绍(一) - 简书

[原创] ELF文件格式解析器 原理 + 代码-编程技术-看雪论坛-安全社区|安全招聘|bbs.pediy.com

ELF文件格式解析_mergerly的博客-CSDN博客_elf文件格式详解

https://www.52pojie.cn/forum.php?mod=viewthread&tid=1282554&extra=&highlight=elf&page=1

https://www.52pojie.cn/forum.php?mod=viewthread&tid=591986&extra=&highlight=elf%CE%C4%BC%FE&page=1

除了对于理论的熟悉,我们还要实操下,自己写一个readelf功能的c/c++程序,(当然python,java也可以,你开心就好),以加深对elf格式的理解。

正文

(一)对简单so加密实例一(基于特定section的加解密)的一个详细描述

本篇的简单so加密的参考实例来源于:

[原创]简单粗暴的so加解密实现-Android安全-看雪论坛-安全社区|安全招聘|bbs.pediy.com


基于section的加解密,是指将so文件的特定section进行加密,so文件被加载时解密。
需要编写的一个app,调用一个native方法返回一个字符串供UI显示。在native方法中,又调用getString方法返回一个字符串供native方法返回。我们需要将getString方法加密。这里,将getString方法存放在.mytext中(指定__attribute__((section (".mytext")));),即我们需要对.mytext进行加密。
加密流程:
1)  从so文件头读取section偏移shoff、shnum和shstrtab
2)  读取shstrtab中的字符串,存放在str空间中
3)  从shoff位置开始读取section header, 存放在shdr
4)  通过shdr -> sh_name 在str字符串中索引,与.mytext进行字符串比较,如果不匹配,继续读取
5)  通过shdr -> sh_offset 和 shdr -> sh_size字段,将.mytext内容读取并保存在content中。
6)  为了便于理解,不使用复杂的加密算法。这里,只将content的所有内容取反,即 *content = ~(*content);
7)  将content内容写回so文件中
8)  为了验证第二节中关于section 字段可以任意修改的结论,这里,将shdr -> addr 写入ELF头e_shoff,将shdr -> sh_size 和 addr 所在内存块写入e_entry中,即ehdr.e_entry = (length << 16) + nsize。当然,这样同时也简化了解密流程,还有一个好处是:如果将so文件头修正放回去,程序是不能运行的。

解密流程:
需要保证解密函数在so加载时被调用,那就需要使用:__attribute__((constructor))。(也可以使用c++构造器实现, 其本质也是用attribute实现)
解密流程:
1)  动态链接器通过call_array调用init_getString
2)  Init_getString首先调用getLibAddr方法,得到so文件在内存中的起始地址
3)  读取前52字节,即ELF头。通过e_shoff获得.mytext内存加载地址,ehdr.e_entry获取.mytext大小和所在内存块
4)  修改.mytext所在内存块的读写权限
5)  将[e_shoff, e_shoff + size]内存区域数据解密,即取反操作:*content = ~(*content);
6)  修改回内存区域的读写权限
(这里是对代码段的数据进行解密,需要写权限。如果对数据段的数据解密,是不需要更改权限直接操作的)

(二)编写一个正常so的app

这个so里有解密程序。

我用的是as创建一个native c++工程。

结构目录如下:

CMakeLists.txt代码如下:

  1. cmake_minimum_required(VERSION 3.4.1)
  2. #设置生成的so动态库最后输出的路径
  3. set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/../jniLibs/${ANDROID_ABI})
  4. add_library(
  5. demo
  6. SHARED
  7. demo.cpp)
  8. find_library(
  9. log-lib
  10. log)
  11. target_link_libraries(
  12. demo
  13. ${log-lib})

demo.cpp代码如下:

  1. #include <jni.h>
  2. #include <cstdio>
  3. #include <cstdlib>
  4. #include <cstring>
  5. #include <unistd.h>
  6. #include <sys/types.h>
  7. #include <elf.h>
  8. #include <sys/mman.h>
  9. #include "mylog.h"
  10. #define __init_array __attribute__((constructor))
  11. jstring __attribute__((section (".mytext"))) getString(JNIEnv *env) {
  12. LOGI("加载成功111111!!!");
  13. return env->NewStringUTF("Native method return!");
  14. };
  15. unsigned long getLibAddr() {
  16. unsigned long addr = 0;
  17. char name[] = "libdemo.so";
  18. char buf[4096];
  19. int pid;
  20. FILE *fp;
  21. pid = getpid();
  22. sprintf(buf, "/proc/%d/maps", pid);
  23. fp = fopen(buf, "r");
  24. if (fp == NULL) {
  25. LOGI("open %s failed", buf);
  26. goto _error;
  27. }
  28. while (fgets(buf, sizeof(buf), fp)) {
  29. if (strstr(buf, name)) {
  30. char *temp = strtok(buf, "-");
  31. addr = strtoul(temp, NULL, 16);
  32. break;
  33. }
  34. }
  35. _error:
  36. fclose(fp);
  37. return addr;
  38. }
  39. void __init_array init_getString() {
  40. char name[15];
  41. unsigned int nblock;
  42. unsigned int nsize;
  43. unsigned long base;
  44. unsigned long text_addr;
  45. unsigned int i;
  46. Elf32_Ehdr *ehdr;
  47. Elf32_Shdr *shdr;
  48. Elf32_Addr e_entry;
  49. base = getLibAddr();
  50. ehdr = (Elf32_Ehdr *) base;
  51. text_addr = ehdr->e_shoff + base;
  52. e_entry = ehdr->e_entry;
  53. nblock = e_entry >> 16;
  54. nsize = e_entry & 0xffff;
  55. LOGI("base:0x%x nblock:0x%x nsize:0x%x", base, nblock, nsize);
  56. if (e_entry) {
  57. if (mprotect((void *) base, 4096 * nsize, PROT_READ | PROT_EXEC | PROT_WRITE) != 0) {
  58. LOGI("mem privilege change failed");
  59. }
  60. for (i = 0; i < nblock; i++) {
  61. char *addr = (char *) (text_addr + i);
  62. *addr = ~(*addr);
  63. LOGI("addr:%x", *addr);
  64. }
  65. if (mprotect((void *) base, 4096 * nsize, PROT_READ | PROT_EXEC) != 0) {
  66. LOGI("mem privilege change failed");
  67. }
  68. LOGI("Decrypt success");
  69. } else {
  70. LOGI("the so is not encrypted");
  71. }
  72. }
  73. extern "C" JNIEXPORT jstring JNICALL
  74. Java_com_encode_sofile_MainActivity_getString(JNIEnv *env, jobject thiz) {
  75. return getString(env);
  76. }

mylog.h代码如下:

  1. #include <android/log.h>
  2. #ifndef MYLOG_H
  3. #define MYLOG_H
  4. /*
  5. * 添加日志打印
  6. */
  7. #define TAG "testApp" // 这个是自定义的标识
  8. #define LOGD(...) __android_log_print(ANDROID_LOG_DEBUG,TAG ,__VA_ARGS__)
  9. #define LOGI(...) __android_log_print(ANDROID_LOG_INFO,TAG ,__VA_ARGS__)
  10. #define LOGW(...) __android_log_print(ANDROID_LOG_WARN,TAG ,__VA_ARGS__)
  11. #define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,TAG ,__VA_ARGS__)
  12. #define LOGF(...) __android_log_print(ANDROID_LOG_FATAL,TAG ,__VA_ARGS__)
  13. #endif //MYLOG_H

MainActivity.java如下:

  1. package com.encode.sofile;
  2. import androidx.appcompat.app.AppCompatActivity;
  3. import android.os.Bundle;
  4. import android.widget.TextView;
  5. public class MainActivity extends AppCompatActivity {
  6. static {
  7. System.loadLibrary("demo");
  8. }
  9. @Override
  10. protected void onCreate(Bundle savedInstanceState) {
  11. super.onCreate(savedInstanceState);
  12. setContentView(R.layout.activity_main);
  13. // Example of a call to a native method
  14. TextView tv = findViewById(R.id.sample_text);
  15. tv.setText(getString());
  16. }
  17. public native String getString();
  18. }

build.gradle代码如下:

  1. apply plugin: 'com.android.application'
  2. android {
  3. compileSdkVersion 30
  4. buildToolsVersion "30.0.2"
  5. defaultConfig {
  6. applicationId "com.encode.sofile"
  7. minSdkVersion 21
  8. targetSdkVersion 30
  9. versionCode 1
  10. versionName "1.0"
  11. testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
  12. externalNativeBuild {
  13. cmake {
  14. cppFlags ""
  15. }
  16. }
  17. ndk {
  18. ldLibs "log" //实现__android_log_print
  19. // 设置支持的so构架
  20. abiFilters 'armeabi-v7a'//, 'arm64-v8a'// , 'x86', 'x86_64'
  21. }
  22. }
  23. buildTypes {
  24. release {
  25. minifyEnabled false
  26. proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
  27. }
  28. }
  29. externalNativeBuild {
  30. cmake {
  31. path "src/main/cpp/CMakeLists.txt"
  32. version "3.10.2"
  33. }
  34. }
  35. //解决:在增加多个cpp后,编译时出现More than one file was found with OS independent path 'lib/arm64-v8a/libnative-two.so'问题,添加如下代码
  36. packagingOptions {
  37. pickFirst 'lib/armeabi-v7a/libdemo.so'
  38. }
  39. }
  40. dependencies {
  41. implementation fileTree(dir: "libs", include: ["*.jar"])
  42. implementation 'androidx.appcompat:appcompat:1.2.0'
  43. implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
  44. testImplementation 'junit:junit:4.12'
  45. androidTestImplementation 'androidx.test.ext:junit:1.1.2'
  46. androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'
  47. }

运行安装,不出意外,日志将打印

  1. com.encode.sofile I/testApp: base:0xf4274000 nblock:0x0 nsize:0x0
  2. com.encode.sofile I/testApp: the so is not encrypted
  3. com.encode.sofile I/testApp: 加载成功111111!!!

并且app正常加载。

我们发现在目录下会自动生成 jniLibs/armeabi-v7a/libdemo.so ,它有152kb。

当我们解压 build/outputs/apk/debug/app-debug.apk,发现它的libdemo.so只有14kb。通过解析elf,发现自动生成的多了一些debug相关的section。所以我用的是解压apk后得到的libdemo.so,毕竟能小就小嘛。

(三)编写加密脚本

我用的是clion创建一个c++工程

encryptSection.cpp代码如下:

  1. #include <cstdint>
  2. #include <cstdio>
  3. #include "elf.h"
  4. #include <malloc.h>
  5. int encryptAssignSection(FILE *fp);
  6. int main() {
  7. FILE *fp = fopen("./lib/libdemo.so", "rb+"); // 这个so是解压apk后得到的so
  8. if (fp == NULL) {
  9. printf("打开文件失败");
  10. return 0; //空指针则返回0,文件打开失败
  11. }
  12. encryptAssignSection(fp);
  13. }
  14. int encryptAssignSection(FILE *fp) {
  15. Elf32_Ehdr elfHeader;
  16. Elf32_Shdr shstrtab;
  17. Elf32_Shdr sectionTabElemnt;
  18. char target_section[] = ".mytext"; // 记得修改它!!!!!
  19. int target_section_offset = 0, target_section_size = 0;
  20. fread(&elfHeader, sizeof(Elf32_Ehdr), 1, fp);
  21. printf("e_shoff:0x%x e_shstrndx:0x%x\n", elfHeader.e_shoff, elfHeader.e_shstrndx);
  22. fseek(fp, elfHeader.e_shoff + elfHeader.e_shentsize * elfHeader.e_shstrndx, SEEK_SET);
  23. fread(&shstrtab, elfHeader.e_shentsize, 1, fp);
  24. printf("shstrtab sh_name:0x%x sh_offset:0x%x\n", shstrtab.sh_name, shstrtab.sh_offset);
  25. char *shstrtab_data = (char *) malloc(shstrtab.sh_size);
  26. memset(shstrtab_data, 0, shstrtab.sh_size);
  27. fseek(fp, shstrtab.sh_offset, SEEK_SET);
  28. fread(shstrtab_data, shstrtab.sh_size, 1, fp);
  29. fseek(fp, elfHeader.e_shoff, SEEK_SET);
  30. for (int i = 0; i < elfHeader.e_shnum; ++i) {
  31. fread(&sectionTabElemnt, sizeof(Elf32_Shdr), 1, fp);
  32. if (strcmp(shstrtab_data + sectionTabElemnt.sh_name, target_section) == 0) {
  33. target_section_offset = sectionTabElemnt.sh_offset;
  34. target_section_size = sectionTabElemnt.sh_size;
  35. printf("Find target section: %s sh_offset:0x%x sh_size:0x%x\n", target_section, target_section_offset, target_section_size);
  36. break;
  37. }
  38. }
  39. free(shstrtab_data);
  40. fseek(fp, target_section_offset, SEEK_SET);
  41. char *content = (char *) malloc(target_section_size);
  42. memset(content, 0, target_section_size);
  43. fread(content, target_section_size, 1, fp);
  44. printf("原始:");
  45. for (int j = 0; j < target_section_size; j++) {
  46. printf("%x ", content[j] & 0x000000ff);
  47. content[j] = ~content[j];
  48. }
  49. printf("\n现在:");
  50. for (int j = 0; j < target_section_size; j++) {
  51. printf("%x ", content[j] & 0x000000ff);
  52. }
  53. printf("\n");
  54. fseek(fp, target_section_offset, SEEK_SET);
  55. int ws = fwrite(content, 1, target_section_size, fp);
  56. // printf("%d %d\n", ws, target_section_size);
  57. ws == target_section_size ? printf("write section OK\n") : printf("write section Faile\n");
  58. unsigned char block_size = 16;
  59. unsigned short nblock = target_section_size / block_size;
  60. unsigned short nsize = target_section_offset / 4096 + (target_section_offset % 4096 == 0 ? 0 : 1);
  61. printf("nblock:%d, nsize:%d\n", nblock, nsize);
  62. elfHeader.e_entry = (target_section_size << 16) + nsize;
  63. elfHeader.e_shoff = target_section_offset;
  64. fseek(fp, 0, SEEK_SET);
  65. int we = fwrite(&elfHeader, 1, sizeof(Elf32_Ehdr), fp);
  66. we == sizeof(Elf32_Ehdr) ? printf("write elfHeader OK\n") : printf("write elfHeader Faile\n");
  67. (ws == target_section_size && we == sizeof(Elf32_Ehdr)) ? printf("Completed successfully") : printf("Completed failed");
  68. free(content);
  69. fclose(fp);
  70. return 1;
  71. }

elf.h代码如下:

  1. #ifndef ELF_H
  2. #define ELF_H
  3. #include <cstdint>
  4. #include <cstring>
  5. typedef uint32_t Elf32_Addr; // Program address
  6. typedef uint32_t Elf32_Off; // File offset
  7. typedef uint16_t Elf32_Half;
  8. typedef uint32_t Elf32_Word;
  9. typedef int32_t Elf32_Sword;
  10. typedef uint64_t Elf64_Addr;
  11. typedef uint64_t Elf64_Off;
  12. typedef uint16_t Elf64_Half;
  13. typedef uint32_t Elf64_Word;
  14. typedef int32_t Elf64_Sword;
  15. typedef uint64_t Elf64_Xword;
  16. typedef int64_t Elf64_Sxword;
  17. // Object file magic string.
  18. static constexpr char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' };
  19. // e_ident size and indices.
  20. enum {
  21. EI_MAG0 = 0, // File identification index.
  22. EI_MAG1 = 1, // File identification index.
  23. EI_MAG2 = 2, // File identification index.
  24. EI_MAG3 = 3, // File identification index.
  25. EI_CLASS = 4, // File class.
  26. EI_DATA = 5, // Data encoding.
  27. EI_VERSION = 6, // File version.
  28. EI_OSABI = 7, // OS/ABI identification.
  29. EI_ABIVERSION = 8, // ABI version.
  30. EI_PAD = 9, // Start of padding bytes.
  31. EI_NIDENT = 16 // Number of bytes in e_ident.
  32. };
  33. // BEGIN android-added for <elf.h> compat
  34. constexpr char ELFMAG0 = ElfMagic[EI_MAG0];
  35. constexpr char ELFMAG1 = ElfMagic[EI_MAG1];
  36. constexpr char ELFMAG2 = ElfMagic[EI_MAG2];
  37. constexpr char ELFMAG3 = ElfMagic[EI_MAG3];
  38. constexpr char ELFMAG[] = "\177ELF";
  39. constexpr int SELFMAG = 4;
  40. constexpr int NT_PRSTATUS = 1;
  41. // END android-added for <elf.h> compat
  42. struct Elf32_Ehdr {
  43. unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
  44. Elf32_Half e_type; // Type of file (see ET_* below)
  45. Elf32_Half e_machine; // Required architecture for this file (see EM_*)
  46. Elf32_Word e_version; // Must be equal to 1
  47. Elf32_Addr e_entry; // Address to jump to in order to start program
  48. Elf32_Off e_phoff; // Program header table's file offset, in bytes
  49. Elf32_Off e_shoff; // Section header table's file offset, in bytes
  50. Elf32_Word e_flags; // Processor-specific flags
  51. Elf32_Half e_ehsize; // Size of ELF header, in bytes
  52. Elf32_Half e_phentsize; // Size of an entry in the program header table
  53. Elf32_Half e_phnum; // Number of entries in the program header table
  54. Elf32_Half e_shentsize; // Size of an entry in the section header table
  55. Elf32_Half e_shnum; // Number of entries in the section header table
  56. Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table
  57. bool checkMagic() const {
  58. return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
  59. }
  60. unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
  61. unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
  62. };
  63. // 64-bit ELF header. Fields are the same as for ELF32, but with different
  64. // types (see above).
  65. struct Elf64_Ehdr {
  66. unsigned char e_ident[EI_NIDENT];
  67. Elf64_Half e_type;
  68. Elf64_Half e_machine;
  69. Elf64_Word e_version;
  70. Elf64_Addr e_entry;
  71. Elf64_Off e_phoff;
  72. Elf64_Off e_shoff;
  73. Elf64_Word e_flags;
  74. Elf64_Half e_ehsize;
  75. Elf64_Half e_phentsize;
  76. Elf64_Half e_phnum;
  77. Elf64_Half e_shentsize;
  78. Elf64_Half e_shnum;
  79. Elf64_Half e_shstrndx;
  80. bool checkMagic() const {
  81. return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
  82. }
  83. unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
  84. unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
  85. };
  86. // File types
  87. enum {
  88. ET_NONE = 0, // No file type
  89. ET_REL = 1, // Relocatable file
  90. ET_EXEC = 2, // Executable file
  91. ET_DYN = 3, // Shared object file
  92. ET_CORE = 4, // Core file
  93. ET_LOPROC = 0xff00, // Beginning of processor-specific codes
  94. ET_HIPROC = 0xffff // Processor-specific
  95. };
  96. // Versioning
  97. enum {
  98. EV_NONE = 0,
  99. EV_CURRENT = 1
  100. };
  101. // Machine architectures
  102. enum {
  103. EM_NONE = 0, // No machine
  104. EM_M32 = 1, // AT&T WE 32100
  105. EM_SPARC = 2, // SPARC
  106. EM_386 = 3, // Intel 386
  107. EM_68K = 4, // Motorola 68000
  108. EM_88K = 5, // Motorola 88000
  109. EM_486 = 6, // Intel 486 (deprecated)
  110. EM_860 = 7, // Intel 80860
  111. EM_MIPS = 8, // MIPS R3000
  112. EM_S370 = 9, // IBM System/370
  113. EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian
  114. EM_PARISC = 15, // Hewlett-Packard PA-RISC
  115. EM_VPP500 = 17, // Fujitsu VPP500
  116. EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC
  117. EM_960 = 19, // Intel 80960
  118. EM_PPC = 20, // PowerPC
  119. EM_PPC64 = 21, // PowerPC64
  120. EM_S390 = 22, // IBM System/390
  121. EM_SPU = 23, // IBM SPU/SPC
  122. EM_V800 = 36, // NEC V800
  123. EM_FR20 = 37, // Fujitsu FR20
  124. EM_RH32 = 38, // TRW RH-32
  125. EM_RCE = 39, // Motorola RCE
  126. EM_ARM = 40, // ARM
  127. EM_ALPHA = 41, // DEC Alpha
  128. EM_SH = 42, // Hitachi SH
  129. EM_SPARCV9 = 43, // SPARC V9
  130. EM_TRICORE = 44, // Siemens TriCore
  131. EM_ARC = 45, // Argonaut RISC Core
  132. EM_H8_300 = 46, // Hitachi H8/300
  133. EM_H8_300H = 47, // Hitachi H8/300H
  134. EM_H8S = 48, // Hitachi H8S
  135. EM_H8_500 = 49, // Hitachi H8/500
  136. EM_IA_64 = 50, // Intel IA-64 processor architecture
  137. EM_MIPS_X = 51, // Stanford MIPS-X
  138. EM_COLDFIRE = 52, // Motorola ColdFire
  139. EM_68HC12 = 53, // Motorola M68HC12
  140. EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator
  141. EM_PCP = 55, // Siemens PCP
  142. EM_NCPU = 56, // Sony nCPU embedded RISC processor
  143. EM_NDR1 = 57, // Denso NDR1 microprocessor
  144. EM_STARCORE = 58, // Motorola Star*Core processor
  145. EM_ME16 = 59, // Toyota ME16 processor
  146. EM_ST100 = 60, // STMicroelectronics ST100 processor
  147. EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family
  148. EM_X86_64 = 62, // AMD x86-64 architecture
  149. EM_PDSP = 63, // Sony DSP Processor
  150. EM_PDP10 = 64, // Digital Equipment Corp. PDP-10
  151. EM_PDP11 = 65, // Digital Equipment Corp. PDP-11
  152. EM_FX66 = 66, // Siemens FX66 microcontroller
  153. EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller
  154. EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller
  155. EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller
  156. EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller
  157. EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller
  158. EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller
  159. EM_SVX = 73, // Silicon Graphics SVx
  160. EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller
  161. EM_VAX = 75, // Digital VAX
  162. EM_CRIS = 76, // Axis Communications 32-bit embedded processor
  163. EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor
  164. EM_FIREPATH = 78, // Element 14 64-bit DSP Processor
  165. EM_ZSP = 79, // LSI Logic 16-bit DSP Processor
  166. EM_MMIX = 80, // Donald Knuth's educational 64-bit processor
  167. EM_HUANY = 81, // Harvard University machine-independent object files
  168. EM_PRISM = 82, // SiTera Prism
  169. EM_AVR = 83, // Atmel AVR 8-bit microcontroller
  170. EM_FR30 = 84, // Fujitsu FR30
  171. EM_D10V = 85, // Mitsubishi D10V
  172. EM_D30V = 86, // Mitsubishi D30V
  173. EM_V850 = 87, // NEC v850
  174. EM_M32R = 88, // Mitsubishi M32R
  175. EM_MN10300 = 89, // Matsushita MN10300
  176. EM_MN10200 = 90, // Matsushita MN10200
  177. EM_PJ = 91, // picoJava
  178. EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor
  179. EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old
  180. // spelling/synonym: EM_ARC_A5)
  181. EM_XTENSA = 94, // Tensilica Xtensa Architecture
  182. EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor
  183. EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor
  184. EM_NS32K = 97, // National Semiconductor 32000 series
  185. EM_TPC = 98, // Tenor Network TPC processor
  186. EM_SNP1K = 99, // Trebia SNP 1000 processor
  187. EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200
  188. EM_IP2K = 101, // Ubicom IP2xxx microcontroller family
  189. EM_MAX = 102, // MAX Processor
  190. EM_CR = 103, // National Semiconductor CompactRISC microprocessor
  191. EM_F2MC16 = 104, // Fujitsu F2MC16
  192. EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430
  193. EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor
  194. EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors
  195. EM_SEP = 108, // Sharp embedded microprocessor
  196. EM_ARCA = 109, // Arca RISC Microprocessor
  197. EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC
  198. // of Peking University
  199. EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU
  200. EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor
  201. EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor
  202. EM_CRX = 114, // National Semiconductor CompactRISC CRX
  203. EM_XGATE = 115, // Motorola XGATE embedded processor
  204. EM_C166 = 116, // Infineon C16x/XC16x processor
  205. EM_M16C = 117, // Renesas M16C series microprocessors
  206. EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal
  207. // Controller
  208. EM_CE = 119, // Freescale Communication Engine RISC core
  209. EM_M32C = 120, // Renesas M32C series microprocessors
  210. EM_TSK3000 = 131, // Altium TSK3000 core
  211. EM_RS08 = 132, // Freescale RS08 embedded processor
  212. EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP
  213. // processors
  214. EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor
  215. EM_SCORE7 = 135, // Sunplus S+core7 RISC processor
  216. EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor
  217. EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor
  218. EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture
  219. EM_SE_C17 = 139, // Seiko Epson C17 family
  220. EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family
  221. EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family
  222. EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family
  223. EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor
  224. EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor
  225. EM_R32C = 162, // Renesas R32C series microprocessors
  226. EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family
  227. EM_HEXAGON = 164, // Qualcomm Hexagon processor
  228. EM_8051 = 165, // Intel 8051 and variants
  229. EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable
  230. // and extensible RISC processors
  231. EM_NDS32 = 167, // Andes Technology compact code size embedded RISC
  232. // processor family
  233. EM_ECOG1 = 168, // Cyan Technology eCOG1X family
  234. EM_ECOG1X = 168, // Cyan Technology eCOG1X family
  235. EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers
  236. EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor
  237. EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor
  238. EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture
  239. EM_RX = 173, // Renesas RX family
  240. EM_METAG = 174, // Imagination Technologies META processor
  241. // architecture
  242. EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture
  243. EM_ECOG16 = 176, // Cyan Technology eCOG16 family
  244. EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit
  245. // microprocessor
  246. EM_ETPU = 178, // Freescale Extended Time Processing Unit
  247. EM_SLE9X = 179, // Infineon Technologies SLE9X core
  248. EM_L10M = 180, // Intel L10M
  249. EM_K10M = 181, // Intel K10M
  250. EM_AARCH64 = 183, // ARM AArch64
  251. EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family
  252. EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller
  253. EM_TILE64 = 187, // Tilera TILE64 multicore architecture family
  254. EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family
  255. EM_CUDA = 190, // NVIDIA CUDA architecture
  256. EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family
  257. EM_CLOUDSHIELD = 192, // CloudShield architecture family
  258. EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family
  259. EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family
  260. EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2
  261. EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core
  262. EM_RL78 = 197, // Renesas RL78 family
  263. EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor
  264. EM_78KOR = 199, // Renesas 78KOR family
  265. EM_56800EX = 200 // Freescale 56800EX Digital Signal Controller (DSC)
  266. };
  267. // Object file classes.
  268. enum {
  269. ELFCLASSNONE = 0,
  270. ELFCLASS32 = 1, // 32-bit object file
  271. ELFCLASS64 = 2 // 64-bit object file
  272. };
  273. // Object file byte orderings.
  274. enum {
  275. ELFDATANONE = 0, // Invalid data encoding.
  276. ELFDATA2LSB = 1, // Little-endian object file
  277. ELFDATA2MSB = 2 // Big-endian object file
  278. };
  279. // OS ABI identification.
  280. enum {
  281. ELFOSABI_NONE = 0, // UNIX System V ABI
  282. ELFOSABI_HPUX = 1, // HP-UX operating system
  283. ELFOSABI_NETBSD = 2, // NetBSD
  284. ELFOSABI_GNU = 3, // GNU/Linux
  285. ELFOSABI_LINUX = 3, // Historical alias for ELFOSABI_GNU.
  286. ELFOSABI_HURD = 4, // GNU/Hurd
  287. ELFOSABI_SOLARIS = 6, // Solaris
  288. ELFOSABI_AIX = 7, // AIX
  289. ELFOSABI_IRIX = 8, // IRIX
  290. ELFOSABI_FREEBSD = 9, // FreeBSD
  291. ELFOSABI_TRU64 = 10, // TRU64 UNIX
  292. ELFOSABI_MODESTO = 11, // Novell Modesto
  293. ELFOSABI_OPENBSD = 12, // OpenBSD
  294. ELFOSABI_OPENVMS = 13, // OpenVMS
  295. ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel
  296. ELFOSABI_AROS = 15, // AROS
  297. ELFOSABI_FENIXOS = 16, // FenixOS
  298. ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
  299. ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000
  300. ELFOSABI_ARM = 97, // ARM
  301. ELFOSABI_STANDALONE = 255 // Standalone (embedded) application
  302. };
  303. // X86_64 relocations.
  304. enum {
  305. R_X86_64_NONE = 0,
  306. R_X86_64_64 = 1,
  307. R_X86_64_PC32 = 2,
  308. R_X86_64_GOT32 = 3,
  309. R_X86_64_PLT32 = 4,
  310. R_X86_64_COPY = 5,
  311. R_X86_64_GLOB_DAT = 6,
  312. R_X86_64_JUMP_SLOT = 7,
  313. R_X86_64_RELATIVE = 8,
  314. R_X86_64_GOTPCREL = 9,
  315. R_X86_64_32 = 10,
  316. R_X86_64_32S = 11,
  317. R_X86_64_16 = 12,
  318. R_X86_64_PC16 = 13,
  319. R_X86_64_8 = 14,
  320. R_X86_64_PC8 = 15,
  321. R_X86_64_DTPMOD64 = 16,
  322. R_X86_64_DTPOFF64 = 17,
  323. R_X86_64_TPOFF64 = 18,
  324. R_X86_64_TLSGD = 19,
  325. R_X86_64_TLSLD = 20,
  326. R_X86_64_DTPOFF32 = 21,
  327. R_X86_64_GOTTPOFF = 22,
  328. R_X86_64_TPOFF32 = 23,
  329. R_X86_64_PC64 = 24,
  330. R_X86_64_GOTOFF64 = 25,
  331. R_X86_64_GOTPC32 = 26,
  332. R_X86_64_GOT64 = 27,
  333. R_X86_64_GOTPCREL64 = 28,
  334. R_X86_64_GOTPC64 = 29,
  335. R_X86_64_GOTPLT64 = 30,
  336. R_X86_64_PLTOFF64 = 31,
  337. R_X86_64_SIZE32 = 32,
  338. R_X86_64_SIZE64 = 33,
  339. R_X86_64_GOTPC32_TLSDESC = 34,
  340. R_X86_64_TLSDESC_CALL = 35,
  341. R_X86_64_TLSDESC = 36,
  342. R_X86_64_IRELATIVE = 37
  343. };
  344. // i386 relocations.
  345. // TODO: this is just a subset
  346. enum {
  347. R_386_NONE = 0,
  348. R_386_32 = 1,
  349. R_386_PC32 = 2,
  350. R_386_GOT32 = 3,
  351. R_386_PLT32 = 4,
  352. R_386_COPY = 5,
  353. R_386_GLOB_DAT = 6,
  354. R_386_JUMP_SLOT = 7,
  355. R_386_RELATIVE = 8,
  356. R_386_GOTOFF = 9,
  357. R_386_GOTPC = 10,
  358. R_386_32PLT = 11,
  359. R_386_TLS_TPOFF = 14,
  360. R_386_TLS_IE = 15,
  361. R_386_TLS_GOTIE = 16,
  362. R_386_TLS_LE = 17,
  363. R_386_TLS_GD = 18,
  364. R_386_TLS_LDM = 19,
  365. R_386_16 = 20,
  366. R_386_PC16 = 21,
  367. R_386_8 = 22,
  368. R_386_PC8 = 23,
  369. R_386_TLS_GD_32 = 24,
  370. R_386_TLS_GD_PUSH = 25,
  371. R_386_TLS_GD_CALL = 26,
  372. R_386_TLS_GD_POP = 27,
  373. R_386_TLS_LDM_32 = 28,
  374. R_386_TLS_LDM_PUSH = 29,
  375. R_386_TLS_LDM_CALL = 30,
  376. R_386_TLS_LDM_POP = 31,
  377. R_386_TLS_LDO_32 = 32,
  378. R_386_TLS_IE_32 = 33,
  379. R_386_TLS_LE_32 = 34,
  380. R_386_TLS_DTPMOD32 = 35,
  381. R_386_TLS_DTPOFF32 = 36,
  382. R_386_TLS_TPOFF32 = 37,
  383. R_386_TLS_GOTDESC = 39,
  384. R_386_TLS_DESC_CALL = 40,
  385. R_386_TLS_DESC = 41,
  386. R_386_IRELATIVE = 42,
  387. R_386_NUM = 43
  388. };
  389. // ELF Relocation types for PPC32
  390. enum {
  391. R_PPC_NONE = 0, /* No relocation. */
  392. R_PPC_ADDR32 = 1,
  393. R_PPC_ADDR24 = 2,
  394. R_PPC_ADDR16 = 3,
  395. R_PPC_ADDR16_LO = 4,
  396. R_PPC_ADDR16_HI = 5,
  397. R_PPC_ADDR16_HA = 6,
  398. R_PPC_ADDR14 = 7,
  399. R_PPC_ADDR14_BRTAKEN = 8,
  400. R_PPC_ADDR14_BRNTAKEN = 9,
  401. R_PPC_REL24 = 10,
  402. R_PPC_REL14 = 11,
  403. R_PPC_REL14_BRTAKEN = 12,
  404. R_PPC_REL14_BRNTAKEN = 13,
  405. R_PPC_GOT16 = 14,
  406. R_PPC_GOT16_LO = 15,
  407. R_PPC_GOT16_HI = 16,
  408. R_PPC_GOT16_HA = 17,
  409. R_PPC_REL32 = 26,
  410. R_PPC_TLS = 67,
  411. R_PPC_DTPMOD32 = 68,
  412. R_PPC_TPREL16 = 69,
  413. R_PPC_TPREL16_LO = 70,
  414. R_PPC_TPREL16_HI = 71,
  415. R_PPC_TPREL16_HA = 72,
  416. R_PPC_TPREL32 = 73,
  417. R_PPC_DTPREL16 = 74,
  418. R_PPC_DTPREL16_LO = 75,
  419. R_PPC_DTPREL16_HI = 76,
  420. R_PPC_DTPREL16_HA = 77,
  421. R_PPC_DTPREL32 = 78,
  422. R_PPC_GOT_TLSGD16 = 79,
  423. R_PPC_GOT_TLSGD16_LO = 80,
  424. R_PPC_GOT_TLSGD16_HI = 81,
  425. R_PPC_GOT_TLSGD16_HA = 82,
  426. R_PPC_GOT_TLSLD16 = 83,
  427. R_PPC_GOT_TLSLD16_LO = 84,
  428. R_PPC_GOT_TLSLD16_HI = 85,
  429. R_PPC_GOT_TLSLD16_HA = 86,
  430. R_PPC_GOT_TPREL16 = 87,
  431. R_PPC_GOT_TPREL16_LO = 88,
  432. R_PPC_GOT_TPREL16_HI = 89,
  433. R_PPC_GOT_TPREL16_HA = 90,
  434. R_PPC_GOT_DTPREL16 = 91,
  435. R_PPC_GOT_DTPREL16_LO = 92,
  436. R_PPC_GOT_DTPREL16_HI = 93,
  437. R_PPC_GOT_DTPREL16_HA = 94,
  438. R_PPC_TLSGD = 95,
  439. R_PPC_TLSLD = 96,
  440. R_PPC_REL16 = 249,
  441. R_PPC_REL16_LO = 250,
  442. R_PPC_REL16_HI = 251,
  443. R_PPC_REL16_HA = 252
  444. };
  445. // ELF Relocation types for PPC64
  446. enum {
  447. R_PPC64_NONE = 0,
  448. R_PPC64_ADDR32 = 1,
  449. R_PPC64_ADDR24 = 2,
  450. R_PPC64_ADDR16 = 3,
  451. R_PPC64_ADDR16_LO = 4,
  452. R_PPC64_ADDR16_HI = 5,
  453. R_PPC64_ADDR16_HA = 6,
  454. R_PPC64_ADDR14 = 7,
  455. R_PPC64_ADDR14_BRTAKEN = 8,
  456. R_PPC64_ADDR14_BRNTAKEN = 9,
  457. R_PPC64_REL24 = 10,
  458. R_PPC64_REL14 = 11,
  459. R_PPC64_REL14_BRTAKEN = 12,
  460. R_PPC64_REL14_BRNTAKEN = 13,
  461. R_PPC64_GOT16 = 14,
  462. R_PPC64_GOT16_LO = 15,
  463. R_PPC64_GOT16_HI = 16,
  464. R_PPC64_GOT16_HA = 17,
  465. R_PPC64_REL32 = 26,
  466. R_PPC64_ADDR64 = 38,
  467. R_PPC64_ADDR16_HIGHER = 39,
  468. R_PPC64_ADDR16_HIGHERA = 40,
  469. R_PPC64_ADDR16_HIGHEST = 41,
  470. R_PPC64_ADDR16_HIGHESTA = 42,
  471. R_PPC64_REL64 = 44,
  472. R_PPC64_TOC16 = 47,
  473. R_PPC64_TOC16_LO = 48,
  474. R_PPC64_TOC16_HI = 49,
  475. R_PPC64_TOC16_HA = 50,
  476. R_PPC64_TOC = 51,
  477. R_PPC64_ADDR16_DS = 56,
  478. R_PPC64_ADDR16_LO_DS = 57,
  479. R_PPC64_GOT16_DS = 58,
  480. R_PPC64_GOT16_LO_DS = 59,
  481. R_PPC64_TOC16_DS = 63,
  482. R_PPC64_TOC16_LO_DS = 64,
  483. R_PPC64_TLS = 67,
  484. R_PPC64_DTPMOD64 = 68,
  485. R_PPC64_TPREL16 = 69,
  486. R_PPC64_TPREL16_LO = 70,
  487. R_PPC64_TPREL16_HI = 71,
  488. R_PPC64_TPREL16_HA = 72,
  489. R_PPC64_TPREL64 = 73,
  490. R_PPC64_DTPREL16 = 74,
  491. R_PPC64_DTPREL16_LO = 75,
  492. R_PPC64_DTPREL16_HI = 76,
  493. R_PPC64_DTPREL16_HA = 77,
  494. R_PPC64_DTPREL64 = 78,
  495. R_PPC64_GOT_TLSGD16 = 79,
  496. R_PPC64_GOT_TLSGD16_LO = 80,
  497. R_PPC64_GOT_TLSGD16_HI = 81,
  498. R_PPC64_GOT_TLSGD16_HA = 82,
  499. R_PPC64_GOT_TLSLD16 = 83,
  500. R_PPC64_GOT_TLSLD16_LO = 84,
  501. R_PPC64_GOT_TLSLD16_HI = 85,
  502. R_PPC64_GOT_TLSLD16_HA = 86,
  503. R_PPC64_GOT_TPREL16_DS = 87,
  504. R_PPC64_GOT_TPREL16_LO_DS = 88,
  505. R_PPC64_GOT_TPREL16_HI = 89,
  506. R_PPC64_GOT_TPREL16_HA = 90,
  507. R_PPC64_GOT_DTPREL16_DS = 91,
  508. R_PPC64_GOT_DTPREL16_LO_DS = 92,
  509. R_PPC64_GOT_DTPREL16_HI = 93,
  510. R_PPC64_GOT_DTPREL16_HA = 94,
  511. R_PPC64_TPREL16_DS = 95,
  512. R_PPC64_TPREL16_LO_DS = 96,
  513. R_PPC64_TPREL16_HIGHER = 97,
  514. R_PPC64_TPREL16_HIGHERA = 98,
  515. R_PPC64_TPREL16_HIGHEST = 99,
  516. R_PPC64_TPREL16_HIGHESTA = 100,
  517. R_PPC64_DTPREL16_DS = 101,
  518. R_PPC64_DTPREL16_LO_DS = 102,
  519. R_PPC64_DTPREL16_HIGHER = 103,
  520. R_PPC64_DTPREL16_HIGHERA = 104,
  521. R_PPC64_DTPREL16_HIGHEST = 105,
  522. R_PPC64_DTPREL16_HIGHESTA = 106,
  523. R_PPC64_TLSGD = 107,
  524. R_PPC64_TLSLD = 108,
  525. R_PPC64_REL16 = 249,
  526. R_PPC64_REL16_LO = 250,
  527. R_PPC64_REL16_HI = 251,
  528. R_PPC64_REL16_HA = 252
  529. };
  530. // ELF Relocation types for AArch64
  531. enum {
  532. R_AARCH64_NONE = 0x100,
  533. R_AARCH64_ABS64 = 0x101,
  534. R_AARCH64_ABS32 = 0x102,
  535. R_AARCH64_ABS16 = 0x103,
  536. R_AARCH64_PREL64 = 0x104,
  537. R_AARCH64_PREL32 = 0x105,
  538. R_AARCH64_PREL16 = 0x106,
  539. R_AARCH64_MOVW_UABS_G0 = 0x107,
  540. R_AARCH64_MOVW_UABS_G0_NC = 0x108,
  541. R_AARCH64_MOVW_UABS_G1 = 0x109,
  542. R_AARCH64_MOVW_UABS_G1_NC = 0x10a,
  543. R_AARCH64_MOVW_UABS_G2 = 0x10b,
  544. R_AARCH64_MOVW_UABS_G2_NC = 0x10c,
  545. R_AARCH64_MOVW_UABS_G3 = 0x10d,
  546. R_AARCH64_MOVW_SABS_G0 = 0x10e,
  547. R_AARCH64_MOVW_SABS_G1 = 0x10f,
  548. R_AARCH64_MOVW_SABS_G2 = 0x110,
  549. R_AARCH64_LD_PREL_LO19 = 0x111,
  550. R_AARCH64_ADR_PREL_LO21 = 0x112,
  551. R_AARCH64_ADR_PREL_PG_HI21 = 0x113,
  552. R_AARCH64_ADD_ABS_LO12_NC = 0x115,
  553. R_AARCH64_LDST8_ABS_LO12_NC = 0x116,
  554. R_AARCH64_TSTBR14 = 0x117,
  555. R_AARCH64_CONDBR19 = 0x118,
  556. R_AARCH64_JUMP26 = 0x11a,
  557. R_AARCH64_CALL26 = 0x11b,
  558. R_AARCH64_LDST16_ABS_LO12_NC = 0x11c,
  559. R_AARCH64_LDST32_ABS_LO12_NC = 0x11d,
  560. R_AARCH64_LDST64_ABS_LO12_NC = 0x11e,
  561. R_AARCH64_LDST128_ABS_LO12_NC = 0x12b,
  562. R_AARCH64_ADR_GOT_PAGE = 0x137,
  563. R_AARCH64_LD64_GOT_LO12_NC = 0x138,
  564. R_AARCH64_TLSLD_MOVW_DTPREL_G2 = 0x20b,
  565. R_AARCH64_TLSLD_MOVW_DTPREL_G1 = 0x20c,
  566. R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC = 0x20d,
  567. R_AARCH64_TLSLD_MOVW_DTPREL_G0 = 0x20e,
  568. R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC = 0x20f,
  569. R_AARCH64_TLSLD_ADD_DTPREL_HI12 = 0x210,
  570. R_AARCH64_TLSLD_ADD_DTPREL_LO12 = 0x211,
  571. R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC = 0x212,
  572. R_AARCH64_TLSLD_LDST8_DTPREL_LO12 = 0x213,
  573. R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC = 0x214,
  574. R_AARCH64_TLSLD_LDST16_DTPREL_LO12 = 0x215,
  575. R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC = 0x216,
  576. R_AARCH64_TLSLD_LDST32_DTPREL_LO12 = 0x217,
  577. R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC = 0x218,
  578. R_AARCH64_TLSLD_LDST64_DTPREL_LO12 = 0x219,
  579. R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC = 0x21a,
  580. R_AARCH64_TLSIE_MOVW_GOTTPREL_G1 = 0x21b,
  581. R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC = 0x21c,
  582. R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 = 0x21d,
  583. R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC = 0x21e,
  584. R_AARCH64_TLSIE_LD_GOTTPREL_PREL19 = 0x21f,
  585. R_AARCH64_TLSLE_MOVW_TPREL_G2 = 0x220,
  586. R_AARCH64_TLSLE_MOVW_TPREL_G1 = 0x221,
  587. R_AARCH64_TLSLE_MOVW_TPREL_G1_NC = 0x222,
  588. R_AARCH64_TLSLE_MOVW_TPREL_G0 = 0x223,
  589. R_AARCH64_TLSLE_MOVW_TPREL_G0_NC = 0x224,
  590. R_AARCH64_TLSLE_ADD_TPREL_HI12 = 0x225,
  591. R_AARCH64_TLSLE_ADD_TPREL_LO12 = 0x226,
  592. R_AARCH64_TLSLE_ADD_TPREL_LO12_NC = 0x227,
  593. R_AARCH64_TLSLE_LDST8_TPREL_LO12 = 0x228,
  594. R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC = 0x229,
  595. R_AARCH64_TLSLE_LDST16_TPREL_LO12 = 0x22a,
  596. R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC = 0x22b,
  597. R_AARCH64_TLSLE_LDST32_TPREL_LO12 = 0x22c,
  598. R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC = 0x22d,
  599. R_AARCH64_TLSLE_LDST64_TPREL_LO12 = 0x22e,
  600. R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC = 0x22f,
  601. R_AARCH64_TLSDESC_ADR_PAGE = 0x232,
  602. R_AARCH64_TLSDESC_LD64_LO12_NC = 0x233,
  603. R_AARCH64_TLSDESC_ADD_LO12_NC = 0x234,
  604. R_AARCH64_TLSDESC_CALL = 0x239
  605. };
  606. // ARM Specific e_flags
  607. enum : unsigned {
  608. EF_ARM_SOFT_FLOAT = 0x00000200U,
  609. EF_ARM_VFP_FLOAT = 0x00000400U,
  610. EF_ARM_EABI_UNKNOWN = 0x00000000U,
  611. EF_ARM_EABI_VER1 = 0x01000000U,
  612. EF_ARM_EABI_VER2 = 0x02000000U,
  613. EF_ARM_EABI_VER3 = 0x03000000U,
  614. EF_ARM_EABI_VER4 = 0x04000000U,
  615. EF_ARM_EABI_VER5 = 0x05000000U,
  616. EF_ARM_EABIMASK = 0xFF000000U
  617. };
  618. // ELF Relocation types for ARM
  619. // Meets 2.08 ABI Specs.
  620. enum {
  621. R_ARM_NONE = 0x00,
  622. R_ARM_PC24 = 0x01,
  623. R_ARM_ABS32 = 0x02,
  624. R_ARM_REL32 = 0x03,
  625. R_ARM_LDR_PC_G0 = 0x04,
  626. R_ARM_ABS16 = 0x05,
  627. R_ARM_ABS12 = 0x06,
  628. R_ARM_THM_ABS5 = 0x07,
  629. R_ARM_ABS8 = 0x08,
  630. R_ARM_SBREL32 = 0x09,
  631. R_ARM_THM_CALL = 0x0a,
  632. R_ARM_THM_PC8 = 0x0b,
  633. R_ARM_BREL_ADJ = 0x0c,
  634. R_ARM_TLS_DESC = 0x0d,
  635. R_ARM_THM_SWI8 = 0x0e,
  636. R_ARM_XPC25 = 0x0f,
  637. R_ARM_THM_XPC22 = 0x10,
  638. R_ARM_TLS_DTPMOD32 = 0x11,
  639. R_ARM_TLS_DTPOFF32 = 0x12,
  640. R_ARM_TLS_TPOFF32 = 0x13,
  641. R_ARM_COPY = 0x14,
  642. R_ARM_GLOB_DAT = 0x15,
  643. R_ARM_JUMP_SLOT = 0x16,
  644. R_ARM_RELATIVE = 0x17,
  645. R_ARM_GOTOFF32 = 0x18,
  646. R_ARM_BASE_PREL = 0x19,
  647. R_ARM_GOT_BREL = 0x1a,
  648. R_ARM_PLT32 = 0x1b,
  649. R_ARM_CALL = 0x1c,
  650. R_ARM_JUMP24 = 0x1d,
  651. R_ARM_THM_JUMP24 = 0x1e,
  652. R_ARM_BASE_ABS = 0x1f,
  653. R_ARM_ALU_PCREL_7_0 = 0x20,
  654. R_ARM_ALU_PCREL_15_8 = 0x21,
  655. R_ARM_ALU_PCREL_23_15 = 0x22,
  656. R_ARM_LDR_SBREL_11_0_NC = 0x23,
  657. R_ARM_ALU_SBREL_19_12_NC = 0x24,
  658. R_ARM_ALU_SBREL_27_20_CK = 0x25,
  659. R_ARM_TARGET1 = 0x26,
  660. R_ARM_SBREL31 = 0x27,
  661. R_ARM_V4BX = 0x28,
  662. R_ARM_TARGET2 = 0x29,
  663. R_ARM_PREL31 = 0x2a,
  664. R_ARM_MOVW_ABS_NC = 0x2b,
  665. R_ARM_MOVT_ABS = 0x2c,
  666. R_ARM_MOVW_PREL_NC = 0x2d,
  667. R_ARM_MOVT_PREL = 0x2e,
  668. R_ARM_THM_MOVW_ABS_NC = 0x2f,
  669. R_ARM_THM_MOVT_ABS = 0x30,
  670. R_ARM_THM_MOVW_PREL_NC = 0x31,
  671. R_ARM_THM_MOVT_PREL = 0x32,
  672. R_ARM_THM_JUMP19 = 0x33,
  673. R_ARM_THM_JUMP6 = 0x34,
  674. R_ARM_THM_ALU_PREL_11_0 = 0x35,
  675. R_ARM_THM_PC12 = 0x36,
  676. R_ARM_ABS32_NOI = 0x37,
  677. R_ARM_REL32_NOI = 0x38,
  678. R_ARM_ALU_PC_G0_NC = 0x39,
  679. R_ARM_ALU_PC_G0 = 0x3a,
  680. R_ARM_ALU_PC_G1_NC = 0x3b,
  681. R_ARM_ALU_PC_G1 = 0x3c,
  682. R_ARM_ALU_PC_G2 = 0x3d,
  683. R_ARM_LDR_PC_G1 = 0x3e,
  684. R_ARM_LDR_PC_G2 = 0x3f,
  685. R_ARM_LDRS_PC_G0 = 0x40,
  686. R_ARM_LDRS_PC_G1 = 0x41,
  687. R_ARM_LDRS_PC_G2 = 0x42,
  688. R_ARM_LDC_PC_G0 = 0x43,
  689. R_ARM_LDC_PC_G1 = 0x44,
  690. R_ARM_LDC_PC_G2 = 0x45,
  691. R_ARM_ALU_SB_G0_NC = 0x46,
  692. R_ARM_ALU_SB_G0 = 0x47,
  693. R_ARM_ALU_SB_G1_NC = 0x48,
  694. R_ARM_ALU_SB_G1 = 0x49,
  695. R_ARM_ALU_SB_G2 = 0x4a,
  696. R_ARM_LDR_SB_G0 = 0x4b,
  697. R_ARM_LDR_SB_G1 = 0x4c,
  698. R_ARM_LDR_SB_G2 = 0x4d,
  699. R_ARM_LDRS_SB_G0 = 0x4e,
  700. R_ARM_LDRS_SB_G1 = 0x4f,
  701. R_ARM_LDRS_SB_G2 = 0x50,
  702. R_ARM_LDC_SB_G0 = 0x51,
  703. R_ARM_LDC_SB_G1 = 0x52,
  704. R_ARM_LDC_SB_G2 = 0x53,
  705. R_ARM_MOVW_BREL_NC = 0x54,
  706. R_ARM_MOVT_BREL = 0x55,
  707. R_ARM_MOVW_BREL = 0x56,
  708. R_ARM_THM_MOVW_BREL_NC = 0x57,
  709. R_ARM_THM_MOVT_BREL = 0x58,
  710. R_ARM_THM_MOVW_BREL = 0x59,
  711. R_ARM_TLS_GOTDESC = 0x5a,
  712. R_ARM_TLS_CALL = 0x5b,
  713. R_ARM_TLS_DESCSEQ = 0x5c,
  714. R_ARM_THM_TLS_CALL = 0x5d,
  715. R_ARM_PLT32_ABS = 0x5e,
  716. R_ARM_GOT_ABS = 0x5f,
  717. R_ARM_GOT_PREL = 0x60,
  718. R_ARM_GOT_BREL12 = 0x61,
  719. R_ARM_GOTOFF12 = 0x62,
  720. R_ARM_GOTRELAX = 0x63,
  721. R_ARM_GNU_VTENTRY = 0x64,
  722. R_ARM_GNU_VTINHERIT = 0x65,
  723. R_ARM_THM_JUMP11 = 0x66,
  724. R_ARM_THM_JUMP8 = 0x67,
  725. R_ARM_TLS_GD32 = 0x68,
  726. R_ARM_TLS_LDM32 = 0x69,
  727. R_ARM_TLS_LDO32 = 0x6a,
  728. R_ARM_TLS_IE32 = 0x6b,
  729. R_ARM_TLS_LE32 = 0x6c,
  730. R_ARM_TLS_LDO12 = 0x6d,
  731. R_ARM_TLS_LE12 = 0x6e,
  732. R_ARM_TLS_IE12GP = 0x6f,
  733. R_ARM_PRIVATE_0 = 0x70,
  734. R_ARM_PRIVATE_1 = 0x71,
  735. R_ARM_PRIVATE_2 = 0x72,
  736. R_ARM_PRIVATE_3 = 0x73,
  737. R_ARM_PRIVATE_4 = 0x74,
  738. R_ARM_PRIVATE_5 = 0x75,
  739. R_ARM_PRIVATE_6 = 0x76,
  740. R_ARM_PRIVATE_7 = 0x77,
  741. R_ARM_PRIVATE_8 = 0x78,
  742. R_ARM_PRIVATE_9 = 0x79,
  743. R_ARM_PRIVATE_10 = 0x7a,
  744. R_ARM_PRIVATE_11 = 0x7b,
  745. R_ARM_PRIVATE_12 = 0x7c,
  746. R_ARM_PRIVATE_13 = 0x7d,
  747. R_ARM_PRIVATE_14 = 0x7e,
  748. R_ARM_PRIVATE_15 = 0x7f,
  749. R_ARM_ME_TOO = 0x80,
  750. R_ARM_THM_TLS_DESCSEQ16 = 0x81,
  751. R_ARM_THM_TLS_DESCSEQ32 = 0x82
  752. };
  753. // Mips Specific e_flags
  754. enum : unsigned {
  755. EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions
  756. EF_MIPS_PIC = 0x00000002, // Position independent code
  757. EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code
  758. EF_MIPS_ABI2 = 0x00000020,
  759. EF_MIPS_32BITMODE = 0x00000100,
  760. EF_MIPS_NAN2008 = 0x00000400, // Uses IEE 754-2008 NaN encoding
  761. EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI
  762. //ARCH_ASE
  763. EF_MIPS_MICROMIPS = 0x02000000, // microMIPS
  764. EF_MIPS_ARCH_ASE_M16 =
  765. 0x04000000, // Has Mips-16 ISA extensions
  766. //ARCH
  767. EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set
  768. EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set
  769. EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set
  770. EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set
  771. EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set
  772. EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h
  773. EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h
  774. EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2
  775. EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2
  776. EF_MIPS_ARCH_32R6 = 0x90000000, // mips32r6
  777. EF_MIPS_ARCH_64R6 = 0xa0000000, // mips64r6
  778. EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant
  779. };
  780. // ELF Relocation types for Mips
  781. enum {
  782. R_MIPS_NONE = 0,
  783. R_MIPS_16 = 1,
  784. R_MIPS_32 = 2,
  785. R_MIPS_REL32 = 3,
  786. R_MIPS_26 = 4,
  787. R_MIPS_HI16 = 5,
  788. R_MIPS_LO16 = 6,
  789. R_MIPS_GPREL16 = 7,
  790. R_MIPS_LITERAL = 8,
  791. R_MIPS_GOT16 = 9,
  792. R_MIPS_PC16 = 10,
  793. R_MIPS_CALL16 = 11,
  794. R_MIPS_GPREL32 = 12,
  795. R_MIPS_UNUSED1 = 13,
  796. R_MIPS_UNUSED2 = 14,
  797. R_MIPS_SHIFT5 = 16,
  798. R_MIPS_SHIFT6 = 17,
  799. R_MIPS_64 = 18,
  800. R_MIPS_GOT_DISP = 19,
  801. R_MIPS_GOT_PAGE = 20,
  802. R_MIPS_GOT_OFST = 21,
  803. R_MIPS_GOT_HI16 = 22,
  804. R_MIPS_GOT_LO16 = 23,
  805. R_MIPS_SUB = 24,
  806. R_MIPS_INSERT_A = 25,
  807. R_MIPS_INSERT_B = 26,
  808. R_MIPS_DELETE = 27,
  809. R_MIPS_HIGHER = 28,
  810. R_MIPS_HIGHEST = 29,
  811. R_MIPS_CALL_HI16 = 30,
  812. R_MIPS_CALL_LO16 = 31,
  813. R_MIPS_SCN_DISP = 32,
  814. R_MIPS_REL16 = 33,
  815. R_MIPS_ADD_IMMEDIATE = 34,
  816. R_MIPS_PJUMP = 35,
  817. R_MIPS_RELGOT = 36,
  818. R_MIPS_JALR = 37,
  819. R_MIPS_TLS_DTPMOD32 = 38,
  820. R_MIPS_TLS_DTPREL32 = 39,
  821. R_MIPS_TLS_DTPMOD64 = 40,
  822. R_MIPS_TLS_DTPREL64 = 41,
  823. R_MIPS_TLS_GD = 42,
  824. R_MIPS_TLS_LDM = 43,
  825. R_MIPS_TLS_DTPREL_HI16 = 44,
  826. R_MIPS_TLS_DTPREL_LO16 = 45,
  827. R_MIPS_TLS_GOTTPREL = 46,
  828. R_MIPS_TLS_TPREL32 = 47,
  829. R_MIPS_TLS_TPREL64 = 48,
  830. R_MIPS_TLS_TPREL_HI16 = 49,
  831. R_MIPS_TLS_TPREL_LO16 = 50,
  832. R_MIPS_GLOB_DAT = 51,
  833. R_MIPS_PC21_S2 = 60,
  834. R_MIPS_PC26_S2 = 61,
  835. R_MIPS_PC18_S3 = 62,
  836. R_MIPS_PC19_S2 = 63,
  837. R_MIPS_PCHI16 = 64,
  838. R_MIPS_PCLO16 = 65,
  839. R_MIPS16_GOT16 = 102,
  840. R_MIPS16_HI16 = 104,
  841. R_MIPS16_LO16 = 105,
  842. R_MIPS_COPY = 126,
  843. R_MIPS_JUMP_SLOT = 127,
  844. R_MICROMIPS_26_S1 = 133,
  845. R_MICROMIPS_HI16 = 134,
  846. R_MICROMIPS_LO16 = 135,
  847. R_MICROMIPS_GOT16 = 138,
  848. R_MICROMIPS_PC16_S1 = 141,
  849. R_MICROMIPS_CALL16 = 142,
  850. R_MICROMIPS_GOT_DISP = 145,
  851. R_MICROMIPS_GOT_PAGE = 146,
  852. R_MICROMIPS_GOT_OFST = 147,
  853. R_MICROMIPS_TLS_GD = 162,
  854. R_MICROMIPS_TLS_LDM = 163,
  855. R_MICROMIPS_TLS_DTPREL_HI16 = 164,
  856. R_MICROMIPS_TLS_DTPREL_LO16 = 165,
  857. R_MICROMIPS_TLS_TPREL_HI16 = 169,
  858. R_MICROMIPS_TLS_TPREL_LO16 = 170,
  859. R_MIPS_NUM = 218,
  860. R_MIPS_PC32 = 248
  861. };
  862. // Special values for the st_other field in the symbol table entry for MIPS.
  863. enum {
  864. STO_MIPS_OPTIONAL = 0x04, // Symbol whose definition is optional
  865. STO_MIPS_PLT = 0x08, // PLT entry related dynamic table record
  866. STO_MIPS_PIC = 0x20, // PIC func in an object mixes PIC/non-PIC
  867. STO_MIPS_MICROMIPS = 0x80, // MIPS Specific ISA for MicroMips
  868. STO_MIPS_MIPS16 = 0xf0 // MIPS Specific ISA for Mips16
  869. };
  870. // Hexagon Specific e_flags
  871. // Release 5 ABI
  872. enum {
  873. // Object processor version flags, bits[3:0]
  874. EF_HEXAGON_MACH_V2 = 0x00000001, // Hexagon V2
  875. EF_HEXAGON_MACH_V3 = 0x00000002, // Hexagon V3
  876. EF_HEXAGON_MACH_V4 = 0x00000003, // Hexagon V4
  877. EF_HEXAGON_MACH_V5 = 0x00000004, // Hexagon V5
  878. // Highest ISA version flags
  879. EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[3:0]
  880. // of e_flags
  881. EF_HEXAGON_ISA_V2 = 0x00000010, // Hexagon V2 ISA
  882. EF_HEXAGON_ISA_V3 = 0x00000020, // Hexagon V3 ISA
  883. EF_HEXAGON_ISA_V4 = 0x00000030, // Hexagon V4 ISA
  884. EF_HEXAGON_ISA_V5 = 0x00000040 // Hexagon V5 ISA
  885. };
  886. // Hexagon specific Section indexes for common small data
  887. // Release 5 ABI
  888. enum {
  889. SHN_HEXAGON_SCOMMON = 0xff00, // Other access sizes
  890. SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access
  891. SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access
  892. SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access
  893. SHN_HEXAGON_SCOMMON_8 = 0xff04 // Double-word-size access
  894. };
  895. // ELF Relocation types for Hexagon
  896. // Release 5 ABI
  897. enum {
  898. R_HEX_NONE = 0,
  899. R_HEX_B22_PCREL = 1,
  900. R_HEX_B15_PCREL = 2,
  901. R_HEX_B7_PCREL = 3,
  902. R_HEX_LO16 = 4,
  903. R_HEX_HI16 = 5,
  904. R_HEX_32 = 6,
  905. R_HEX_16 = 7,
  906. R_HEX_8 = 8,
  907. R_HEX_GPREL16_0 = 9,
  908. R_HEX_GPREL16_1 = 10,
  909. R_HEX_GPREL16_2 = 11,
  910. R_HEX_GPREL16_3 = 12,
  911. R_HEX_HL16 = 13,
  912. R_HEX_B13_PCREL = 14,
  913. R_HEX_B9_PCREL = 15,
  914. R_HEX_B32_PCREL_X = 16,
  915. R_HEX_32_6_X = 17,
  916. R_HEX_B22_PCREL_X = 18,
  917. R_HEX_B15_PCREL_X = 19,
  918. R_HEX_B13_PCREL_X = 20,
  919. R_HEX_B9_PCREL_X = 21,
  920. R_HEX_B7_PCREL_X = 22,
  921. R_HEX_16_X = 23,
  922. R_HEX_12_X = 24,
  923. R_HEX_11_X = 25,
  924. R_HEX_10_X = 26,
  925. R_HEX_9_X = 27,
  926. R_HEX_8_X = 28,
  927. R_HEX_7_X = 29,
  928. R_HEX_6_X = 30,
  929. R_HEX_32_PCREL = 31,
  930. R_HEX_COPY = 32,
  931. R_HEX_GLOB_DAT = 33,
  932. R_HEX_JMP_SLOT = 34,
  933. R_HEX_RELATIVE = 35,
  934. R_HEX_PLT_B22_PCREL = 36,
  935. R_HEX_GOTREL_LO16 = 37,
  936. R_HEX_GOTREL_HI16 = 38,
  937. R_HEX_GOTREL_32 = 39,
  938. R_HEX_GOT_LO16 = 40,
  939. R_HEX_GOT_HI16 = 41,
  940. R_HEX_GOT_32 = 42,
  941. R_HEX_GOT_16 = 43,
  942. R_HEX_DTPMOD_32 = 44,
  943. R_HEX_DTPREL_LO16 = 45,
  944. R_HEX_DTPREL_HI16 = 46,
  945. R_HEX_DTPREL_32 = 47,
  946. R_HEX_DTPREL_16 = 48,
  947. R_HEX_GD_PLT_B22_PCREL = 49,
  948. R_HEX_GD_GOT_LO16 = 50,
  949. R_HEX_GD_GOT_HI16 = 51,
  950. R_HEX_GD_GOT_32 = 52,
  951. R_HEX_GD_GOT_16 = 53,
  952. R_HEX_IE_LO16 = 54,
  953. R_HEX_IE_HI16 = 55,
  954. R_HEX_IE_32 = 56,
  955. R_HEX_IE_GOT_LO16 = 57,
  956. R_HEX_IE_GOT_HI16 = 58,
  957. R_HEX_IE_GOT_32 = 59,
  958. R_HEX_IE_GOT_16 = 60,
  959. R_HEX_TPREL_LO16 = 61,
  960. R_HEX_TPREL_HI16 = 62,
  961. R_HEX_TPREL_32 = 63,
  962. R_HEX_TPREL_16 = 64,
  963. R_HEX_6_PCREL_X = 65,
  964. R_HEX_GOTREL_32_6_X = 66,
  965. R_HEX_GOTREL_16_X = 67,
  966. R_HEX_GOTREL_11_X = 68,
  967. R_HEX_GOT_32_6_X = 69,
  968. R_HEX_GOT_16_X = 70,
  969. R_HEX_GOT_11_X = 71,
  970. R_HEX_DTPREL_32_6_X = 72,
  971. R_HEX_DTPREL_16_X = 73,
  972. R_HEX_DTPREL_11_X = 74,
  973. R_HEX_GD_GOT_32_6_X = 75,
  974. R_HEX_GD_GOT_16_X = 76,
  975. R_HEX_GD_GOT_11_X = 77,
  976. R_HEX_IE_32_6_X = 78,
  977. R_HEX_IE_16_X = 79,
  978. R_HEX_IE_GOT_32_6_X = 80,
  979. R_HEX_IE_GOT_16_X = 81,
  980. R_HEX_IE_GOT_11_X = 82,
  981. R_HEX_TPREL_32_6_X = 83,
  982. R_HEX_TPREL_16_X = 84,
  983. R_HEX_TPREL_11_X = 85
  984. };
  985. // ELF Relocation types for S390/zSeries
  986. enum {
  987. R_390_NONE = 0,
  988. R_390_8 = 1,
  989. R_390_12 = 2,
  990. R_390_16 = 3,
  991. R_390_32 = 4,
  992. R_390_PC32 = 5,
  993. R_390_GOT12 = 6,
  994. R_390_GOT32 = 7,
  995. R_390_PLT32 = 8,
  996. R_390_COPY = 9,
  997. R_390_GLOB_DAT = 10,
  998. R_390_JMP_SLOT = 11,
  999. R_390_RELATIVE = 12,
  1000. R_390_GOTOFF = 13,
  1001. R_390_GOTPC = 14,
  1002. R_390_GOT16 = 15,
  1003. R_390_PC16 = 16,
  1004. R_390_PC16DBL = 17,
  1005. R_390_PLT16DBL = 18,
  1006. R_390_PC32DBL = 19,
  1007. R_390_PLT32DBL = 20,
  1008. R_390_GOTPCDBL = 21,
  1009. R_390_64 = 22,
  1010. R_390_PC64 = 23,
  1011. R_390_GOT64 = 24,
  1012. R_390_PLT64 = 25,
  1013. R_390_GOTENT = 26,
  1014. R_390_GOTOFF16 = 27,
  1015. R_390_GOTOFF64 = 28,
  1016. R_390_GOTPLT12 = 29,
  1017. R_390_GOTPLT16 = 30,
  1018. R_390_GOTPLT32 = 31,
  1019. R_390_GOTPLT64 = 32,
  1020. R_390_GOTPLTENT = 33,
  1021. R_390_PLTOFF16 = 34,
  1022. R_390_PLTOFF32 = 35,
  1023. R_390_PLTOFF64 = 36,
  1024. R_390_TLS_LOAD = 37,
  1025. R_390_TLS_GDCALL = 38,
  1026. R_390_TLS_LDCALL = 39,
  1027. R_390_TLS_GD32 = 40,
  1028. R_390_TLS_GD64 = 41,
  1029. R_390_TLS_GOTIE12 = 42,
  1030. R_390_TLS_GOTIE32 = 43,
  1031. R_390_TLS_GOTIE64 = 44,
  1032. R_390_TLS_LDM32 = 45,
  1033. R_390_TLS_LDM64 = 46,
  1034. R_390_TLS_IE32 = 47,
  1035. R_390_TLS_IE64 = 48,
  1036. R_390_TLS_IEENT = 49,
  1037. R_390_TLS_LE32 = 50,
  1038. R_390_TLS_LE64 = 51,
  1039. R_390_TLS_LDO32 = 52,
  1040. R_390_TLS_LDO64 = 53,
  1041. R_390_TLS_DTPMOD = 54,
  1042. R_390_TLS_DTPOFF = 55,
  1043. R_390_TLS_TPOFF = 56,
  1044. R_390_20 = 57,
  1045. R_390_GOT20 = 58,
  1046. R_390_GOTPLT20 = 59,
  1047. R_390_TLS_GOTIE20 = 60,
  1048. R_390_IRELATIVE = 61
  1049. };
  1050. // ELF Relocation type for Sparc.
  1051. enum {
  1052. R_SPARC_NONE = 0,
  1053. R_SPARC_8 = 1,
  1054. R_SPARC_16 = 2,
  1055. R_SPARC_32 = 3,
  1056. R_SPARC_DISP8 = 4,
  1057. R_SPARC_DISP16 = 5,
  1058. R_SPARC_DISP32 = 6,
  1059. R_SPARC_WDISP30 = 7,
  1060. R_SPARC_WDISP22 = 8,
  1061. R_SPARC_HI22 = 9,
  1062. R_SPARC_22 = 10,
  1063. R_SPARC_13 = 11,
  1064. R_SPARC_LO10 = 12,
  1065. R_SPARC_GOT10 = 13,
  1066. R_SPARC_GOT13 = 14,
  1067. R_SPARC_GOT22 = 15,
  1068. R_SPARC_PC10 = 16,
  1069. R_SPARC_PC22 = 17,
  1070. R_SPARC_WPLT30 = 18,
  1071. R_SPARC_COPY = 19,
  1072. R_SPARC_GLOB_DAT = 20,
  1073. R_SPARC_JMP_SLOT = 21,
  1074. R_SPARC_RELATIVE = 22,
  1075. R_SPARC_UA32 = 23,
  1076. R_SPARC_PLT32 = 24,
  1077. R_SPARC_HIPLT22 = 25,
  1078. R_SPARC_LOPLT10 = 26,
  1079. R_SPARC_PCPLT32 = 27,
  1080. R_SPARC_PCPLT22 = 28,
  1081. R_SPARC_PCPLT10 = 29,
  1082. R_SPARC_10 = 30,
  1083. R_SPARC_11 = 31,
  1084. R_SPARC_64 = 32,
  1085. R_SPARC_OLO10 = 33,
  1086. R_SPARC_HH22 = 34,
  1087. R_SPARC_HM10 = 35,
  1088. R_SPARC_LM22 = 36,
  1089. R_SPARC_PC_HH22 = 37,
  1090. R_SPARC_PC_HM10 = 38,
  1091. R_SPARC_PC_LM22 = 39,
  1092. R_SPARC_WDISP16 = 40,
  1093. R_SPARC_WDISP19 = 41,
  1094. R_SPARC_7 = 43,
  1095. R_SPARC_5 = 44,
  1096. R_SPARC_6 = 45,
  1097. R_SPARC_DISP64 = 46,
  1098. R_SPARC_PLT64 = 47,
  1099. R_SPARC_HIX22 = 48,
  1100. R_SPARC_LOX10 = 49,
  1101. R_SPARC_H44 = 50,
  1102. R_SPARC_M44 = 51,
  1103. R_SPARC_L44 = 52,
  1104. R_SPARC_REGISTER = 53,
  1105. R_SPARC_UA64 = 54,
  1106. R_SPARC_UA16 = 55,
  1107. R_SPARC_TLS_GD_HI22 = 56,
  1108. R_SPARC_TLS_GD_LO10 = 57,
  1109. R_SPARC_TLS_GD_ADD = 58,
  1110. R_SPARC_TLS_GD_CALL = 59,
  1111. R_SPARC_TLS_LDM_HI22 = 60,
  1112. R_SPARC_TLS_LDM_LO10 = 61,
  1113. R_SPARC_TLS_LDM_ADD = 62,
  1114. R_SPARC_TLS_LDM_CALL = 63,
  1115. R_SPARC_TLS_LDO_HIX22 = 64,
  1116. R_SPARC_TLS_LDO_LOX10 = 65,
  1117. R_SPARC_TLS_LDO_ADD = 66,
  1118. R_SPARC_TLS_IE_HI22 = 67,
  1119. R_SPARC_TLS_IE_LO10 = 68,
  1120. R_SPARC_TLS_IE_LD = 69,
  1121. R_SPARC_TLS_IE_LDX = 70,
  1122. R_SPARC_TLS_IE_ADD = 71,
  1123. R_SPARC_TLS_LE_HIX22 = 72,
  1124. R_SPARC_TLS_LE_LOX10 = 73,
  1125. R_SPARC_TLS_DTPMOD32 = 74,
  1126. R_SPARC_TLS_DTPMOD64 = 75,
  1127. R_SPARC_TLS_DTPOFF32 = 76,
  1128. R_SPARC_TLS_DTPOFF64 = 77,
  1129. R_SPARC_TLS_TPOFF32 = 78,
  1130. R_SPARC_TLS_TPOFF64 = 79,
  1131. R_SPARC_GOTDATA_HIX22 = 80,
  1132. R_SPARC_GOTDATA_LOX22 = 81,
  1133. R_SPARC_GOTDATA_OP_HIX22 = 82,
  1134. R_SPARC_GOTDATA_OP_LOX22 = 83,
  1135. R_SPARC_GOTDATA_OP = 84
  1136. };
  1137. // Section header.
  1138. struct Elf32_Shdr {
  1139. Elf32_Word sh_name; // Section name (index into string table)
  1140. Elf32_Word sh_type; // Section type (SHT_*)
  1141. Elf32_Word sh_flags; // Section flags (SHF_*)
  1142. Elf32_Addr sh_addr; // Address where section is to be loaded
  1143. Elf32_Off sh_offset; // File offset of section data, in bytes
  1144. Elf32_Word sh_size; // Size of section, in bytes
  1145. Elf32_Word sh_link; // Section type-specific header table index link
  1146. Elf32_Word sh_info; // Section type-specific extra information
  1147. Elf32_Word sh_addralign; // Section address alignment
  1148. Elf32_Word sh_entsize; // Size of records contained within the section 每个表项的长度字节数
  1149. };
  1150. // Section header for ELF64 - same fields as ELF32, different types.
  1151. struct Elf64_Shdr {
  1152. Elf64_Word sh_name;
  1153. Elf64_Word sh_type;
  1154. Elf64_Xword sh_flags;
  1155. Elf64_Addr sh_addr;
  1156. Elf64_Off sh_offset;
  1157. Elf64_Xword sh_size;
  1158. Elf64_Word sh_link;
  1159. Elf64_Word sh_info;
  1160. Elf64_Xword sh_addralign;
  1161. Elf64_Xword sh_entsize;
  1162. };
  1163. // Special section indices.
  1164. enum {
  1165. SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless
  1166. SHN_LORESERVE = 0xff00, // Lowest reserved index
  1167. SHN_LOPROC = 0xff00, // Lowest processor-specific index
  1168. SHN_HIPROC = 0xff1f, // Highest processor-specific index
  1169. SHN_LOOS = 0xff20, // Lowest operating system-specific index
  1170. SHN_HIOS = 0xff3f, // Highest operating system-specific index
  1171. SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation
  1172. SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables
  1173. SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE
  1174. SHN_HIRESERVE = 0xffff // Highest reserved index
  1175. };
  1176. // Section types.
  1177. enum : unsigned {
  1178. SHT_NULL = 0, // No associated section (inactive entry).
  1179. SHT_PROGBITS = 1, // Program-defined contents.
  1180. SHT_SYMTAB = 2, // Symbol table.
  1181. SHT_STRTAB = 3, // String table.
  1182. SHT_RELA = 4, // Relocation entries; explicit addends.
  1183. SHT_HASH = 5, // Symbol hash table.
  1184. SHT_DYNAMIC = 6, // Information for dynamic linking.
  1185. SHT_NOTE = 7, // Information about the file.
  1186. SHT_NOBITS = 8, // Data occupies no space in the file.
  1187. SHT_REL = 9, // Relocation entries; no explicit addends.
  1188. SHT_SHLIB = 10, // Reserved.
  1189. SHT_DYNSYM = 11, // Symbol table.
  1190. SHT_INIT_ARRAY = 14, // Pointers to initialization functions.
  1191. SHT_FINI_ARRAY = 15, // Pointers to termination functions.
  1192. SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions.
  1193. SHT_GROUP = 17, // Section group.
  1194. SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries.
  1195. SHT_LOOS = 0x60000000, // Lowest operating system-specific type.
  1196. SHT_GNU_ATTRIBUTES= 0x6ffffff5, // Object attributes.
  1197. SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table.
  1198. SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions.
  1199. SHT_GNU_verneed = 0x6ffffffe, // GNU version references.
  1200. SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table.
  1201. SHT_HIOS = 0x6fffffff, // Highest operating system-specific type.
  1202. SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type.
  1203. // Fixme: All this is duplicated in MCSectionELF. Why??
  1204. // Exception Index table
  1205. SHT_ARM_EXIDX = 0x70000001U,
  1206. // BPABI DLL dynamic linking pre-emption map
  1207. SHT_ARM_PREEMPTMAP = 0x70000002U,
  1208. // Object file compatibility attributes
  1209. SHT_ARM_ATTRIBUTES = 0x70000003U,
  1210. SHT_ARM_DEBUGOVERLAY = 0x70000004U,
  1211. SHT_ARM_OVERLAYSECTION = 0x70000005U,
  1212. SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in
  1213. // this section based on their sizes
  1214. SHT_X86_64_UNWIND = 0x70000001, // Unwind information
  1215. SHT_MIPS_REGINFO = 0x70000006, // Register usage information
  1216. SHT_MIPS_OPTIONS = 0x7000000d, // General options
  1217. SHT_MIPS_ABIFLAGS = 0x7000002a, // Abiflags options
  1218. SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
  1219. SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
  1220. SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
  1221. };
  1222. // Section flags.
  1223. enum : unsigned {
  1224. // Section data should be writable during execution.
  1225. SHF_WRITE = 0x1,
  1226. // Section occupies memory during program execution.
  1227. SHF_ALLOC = 0x2,
  1228. // Section contains executable machine instructions.
  1229. SHF_EXECINSTR = 0x4,
  1230. // The data in this section may be merged.
  1231. SHF_MERGE = 0x10,
  1232. // The data in this section is null-terminated strings.
  1233. SHF_STRINGS = 0x20,
  1234. // A field in this section holds a section header table index.
  1235. SHF_INFO_LINK = 0x40U,
  1236. // Adds special ordering requirements for link editors.
  1237. SHF_LINK_ORDER = 0x80U,
  1238. // This section requires special OS-specific processing to avoid incorrect
  1239. // behavior.
  1240. SHF_OS_NONCONFORMING = 0x100U,
  1241. // This section is a member of a section group.
  1242. SHF_GROUP = 0x200U,
  1243. // This section holds Thread-Local Storage.
  1244. SHF_TLS = 0x400U,
  1245. // This section is excluded from the final executable or shared library.
  1246. SHF_EXCLUDE = 0x80000000U,
  1247. // Start of target-specific flags.
  1248. /// XCORE_SHF_CP_SECTION - All sections with the "c" flag are grouped
  1249. /// together by the linker to form the constant pool and the cp register is
  1250. /// set to the start of the constant pool by the boot code.
  1251. XCORE_SHF_CP_SECTION = 0x800U,
  1252. /// XCORE_SHF_DP_SECTION - All sections with the "d" flag are grouped
  1253. /// together by the linker to form the data section and the dp register is
  1254. /// set to the start of the section by the boot code.
  1255. XCORE_SHF_DP_SECTION = 0x1000U,
  1256. SHF_MASKOS = 0x0ff00000,
  1257. // Bits indicating processor-specific flags.
  1258. SHF_MASKPROC = 0xf0000000,
  1259. // If an object file section does not have this flag set, then it may not hold
  1260. // more than 2GB and can be freely referred to in objects using smaller code
  1261. // models. Otherwise, only objects using larger code models can refer to them.
  1262. // For example, a medium code model object can refer to data in a section that
  1263. // sets this flag besides being able to refer to data in a section that does
  1264. // not set it; likewise, a small code model object can refer only to code in a
  1265. // section that does not set this flag.
  1266. SHF_X86_64_LARGE = 0x10000000,
  1267. // All sections with the GPREL flag are grouped into a global data area
  1268. // for faster accesses
  1269. SHF_HEX_GPREL = 0x10000000,
  1270. // Section contains text/data which may be replicated in other sections.
  1271. // Linker must retain only one copy.
  1272. SHF_MIPS_NODUPES = 0x01000000,
  1273. // Linker must generate implicit hidden weak names.
  1274. SHF_MIPS_NAMES = 0x02000000,
  1275. // Section data local to process.
  1276. SHF_MIPS_LOCAL = 0x04000000,
  1277. // Do not strip this section.
  1278. SHF_MIPS_NOSTRIP = 0x08000000,
  1279. // Section must be part of global data area.
  1280. SHF_MIPS_GPREL = 0x10000000,
  1281. // This section should be merged.
  1282. SHF_MIPS_MERGE = 0x20000000,
  1283. // Address size to be inferred from section entry size.
  1284. SHF_MIPS_ADDR = 0x40000000,
  1285. // Section data is string data by default.
  1286. SHF_MIPS_STRING = 0x80000000
  1287. };
  1288. // Section Group Flags
  1289. enum : unsigned {
  1290. GRP_COMDAT = 0x1,
  1291. GRP_MASKOS = 0x0ff00000,
  1292. GRP_MASKPROC = 0xf0000000
  1293. };
  1294. // Symbol table entries for ELF32.
  1295. struct Elf32_Sym {
  1296. Elf32_Word st_name; // Symbol name (index into string table)
  1297. Elf32_Addr st_value; // Value or address associated with the symbol
  1298. Elf32_Word st_size; // Size of the symbol
  1299. unsigned char st_info; // Symbol's type and binding attributes
  1300. unsigned char st_other; // Must be zero; reserved
  1301. Elf32_Half st_shndx; // Which section (header table index) it's defined in
  1302. // These accessors and mutators correspond to the ELF32_ST_BIND,
  1303. // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
  1304. unsigned char getBinding() const { return st_info >> 4; }
  1305. unsigned char getType() const { return st_info & 0x0f; }
  1306. void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
  1307. void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
  1308. void setBindingAndType(unsigned char b, unsigned char t) {
  1309. st_info = (b << 4) + (t & 0x0f);
  1310. }
  1311. };
  1312. // BEGIN android-added for <elf.h> compat
  1313. static inline unsigned char ELF32_ST_BIND(unsigned char st_info) { return st_info >> 4; }
  1314. static inline unsigned char ELF32_ST_TYPE(unsigned char st_info) { return st_info & 0x0f; }
  1315. static inline unsigned char ELF64_ST_BIND(unsigned char st_info) { return st_info >> 4; }
  1316. static inline unsigned char ELF64_ST_TYPE(unsigned char st_info) { return st_info & 0x0f; }
  1317. // END android-added for <elf.h> compat
  1318. // Symbol table entries for ELF64.
  1319. struct Elf64_Sym {
  1320. Elf64_Word st_name; // Symbol name (index into string table)
  1321. unsigned char st_info; // Symbol's type and binding attributes
  1322. unsigned char st_other; // Must be zero; reserved
  1323. Elf64_Half st_shndx; // Which section (header tbl index) it's defined in
  1324. Elf64_Addr st_value; // Value or address associated with the symbol
  1325. Elf64_Xword st_size; // Size of the symbol
  1326. // These accessors and mutators are identical to those defined for ELF32
  1327. // symbol table entries.
  1328. unsigned char getBinding() const { return st_info >> 4; }
  1329. unsigned char getType() const { return st_info & 0x0f; }
  1330. void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
  1331. void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
  1332. void setBindingAndType(unsigned char b, unsigned char t) {
  1333. st_info = (b << 4) + (t & 0x0f);
  1334. }
  1335. };
  1336. // The size (in bytes) of symbol table entries.
  1337. enum {
  1338. SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size
  1339. SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size.
  1340. };
  1341. // Symbol bindings.
  1342. enum {
  1343. STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def
  1344. STB_GLOBAL = 1, // Global symbol, visible to all object files being combined
  1345. STB_WEAK = 2, // Weak symbol, like global but lower-precedence
  1346. STB_LOOS = 10, // Lowest operating system-specific binding type
  1347. STB_HIOS = 12, // Highest operating system-specific binding type
  1348. STB_LOPROC = 13, // Lowest processor-specific binding type
  1349. STB_HIPROC = 15 // Highest processor-specific binding type
  1350. };
  1351. // Symbol types.
  1352. enum {
  1353. STT_NOTYPE = 0, // Symbol's type is not specified
  1354. STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.)
  1355. STT_FUNC = 2, // Symbol is executable code (function, etc.)
  1356. STT_SECTION = 3, // Symbol refers to a section
  1357. STT_FILE = 4, // Local, absolute symbol that refers to a file
  1358. STT_COMMON = 5, // An uninitialized common block
  1359. STT_TLS = 6, // Thread local data object
  1360. STT_LOOS = 7, // Lowest operating system-specific symbol type
  1361. STT_HIOS = 8, // Highest operating system-specific symbol type
  1362. STT_GNU_IFUNC = 10, // GNU indirect function
  1363. STT_LOPROC = 13, // Lowest processor-specific symbol type
  1364. STT_HIPROC = 15 // Highest processor-specific symbol type
  1365. };
  1366. enum {
  1367. STV_DEFAULT = 0, // Visibility is specified by binding type
  1368. STV_INTERNAL = 1, // Defined by processor supplements
  1369. STV_HIDDEN = 2, // Not visible to other components
  1370. STV_PROTECTED = 3 // Visible in other components but not preemptable
  1371. };
  1372. // Symbol number.
  1373. enum {
  1374. STN_UNDEF = 0
  1375. };
  1376. // Relocation entry, without explicit addend.
  1377. struct Elf32_Rel {
  1378. Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
  1379. Elf32_Word r_info; // Symbol table index and type of relocation to apply
  1380. // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
  1381. // and ELF32_R_INFO macros defined in the ELF specification:
  1382. Elf32_Word getSymbol() const { return (r_info >> 8); }
  1383. unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
  1384. void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
  1385. void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
  1386. void setSymbolAndType(Elf32_Word s, unsigned char t) {
  1387. r_info = (s << 8) + t;
  1388. }
  1389. };
  1390. // Relocation entry with explicit addend.
  1391. struct Elf32_Rela {
  1392. Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
  1393. Elf32_Word r_info; // Symbol table index and type of relocation to apply
  1394. Elf32_Sword r_addend; // Compute value for relocatable field by adding this
  1395. // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
  1396. // and ELF32_R_INFO macros defined in the ELF specification:
  1397. Elf32_Word getSymbol() const { return (r_info >> 8); }
  1398. unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
  1399. void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
  1400. void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
  1401. void setSymbolAndType(Elf32_Word s, unsigned char t) {
  1402. r_info = (s << 8) + t;
  1403. }
  1404. };
  1405. // Relocation entry, without explicit addend.
  1406. struct Elf64_Rel {
  1407. Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
  1408. Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
  1409. // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
  1410. // and ELF64_R_INFO macros defined in the ELF specification:
  1411. Elf64_Word getSymbol() const { return (r_info >> 32); }
  1412. Elf64_Word getType() const {
  1413. return (Elf64_Word) (r_info & 0xffffffffL);
  1414. }
  1415. void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
  1416. void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
  1417. void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
  1418. r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL);
  1419. }
  1420. };
  1421. // Relocation entry with explicit addend.
  1422. struct Elf64_Rela {
  1423. Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
  1424. Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
  1425. Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.
  1426. // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
  1427. // and ELF64_R_INFO macros defined in the ELF specification:
  1428. Elf64_Word getSymbol() const { return (r_info >> 32); }
  1429. Elf64_Word getType() const {
  1430. return (Elf64_Word) (r_info & 0xffffffffL);
  1431. }
  1432. void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
  1433. void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
  1434. void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
  1435. r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL);
  1436. }
  1437. };
  1438. // Program header for ELF32.
  1439. struct Elf32_Phdr {
  1440. Elf32_Word p_type; // Type of segment
  1441. Elf32_Off p_offset; // File offset where segment is located, in bytes
  1442. Elf32_Addr p_vaddr; // Virtual address of beginning of segment
  1443. Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
  1444. Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
  1445. Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
  1446. Elf32_Word p_flags; // Segment flags
  1447. Elf32_Word p_align; // Segment alignment constraint
  1448. };
  1449. // Program header for ELF64.
  1450. struct Elf64_Phdr {
  1451. Elf64_Word p_type; // Type of segment
  1452. Elf64_Word p_flags; // Segment flags
  1453. Elf64_Off p_offset; // File offset where segment is located, in bytes
  1454. Elf64_Addr p_vaddr; // Virtual address of beginning of segment
  1455. Elf64_Addr p_paddr; // Physical addr of beginning of segment (OS-specific)
  1456. Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
  1457. Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
  1458. Elf64_Xword p_align; // Segment alignment constraint
  1459. };
  1460. // Segment types.
  1461. enum {
  1462. PT_NULL = 0, // Unused segment.
  1463. PT_LOAD = 1, // Loadable segment.
  1464. PT_DYNAMIC = 2, // Dynamic linking information.
  1465. PT_INTERP = 3, // Interpreter pathname.
  1466. PT_NOTE = 4, // Auxiliary information.
  1467. PT_SHLIB = 5, // Reserved.
  1468. PT_PHDR = 6, // The program header table itself.
  1469. PT_TLS = 7, // The thread-local storage template.
  1470. PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type.
  1471. PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type.
  1472. PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type.
  1473. PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type.
  1474. // x86-64 program header types.
  1475. // These all contain stack unwind tables.
  1476. PT_GNU_EH_FRAME = 0x6474e550,
  1477. PT_SUNW_EH_FRAME = 0x6474e550,
  1478. PT_SUNW_UNWIND = 0x6464e550,
  1479. PT_GNU_STACK = 0x6474e551, // Indicates stack executability.
  1480. PT_GNU_RELRO = 0x6474e552, // Read-only after relocation.
  1481. // ARM program header types.
  1482. PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info
  1483. // These all contain stack unwind tables.
  1484. PT_ARM_EXIDX = 0x70000001,
  1485. PT_ARM_UNWIND = 0x70000001,
  1486. // MIPS program header types.
  1487. PT_MIPS_REGINFO = 0x70000000, // Register usage information.
  1488. PT_MIPS_RTPROC = 0x70000001, // Runtime procedure table.
  1489. PT_MIPS_OPTIONS = 0x70000002, // Options segment.
  1490. PT_MIPS_ABIFLAGS = 0x70000003 // Abiflags segment.
  1491. };
  1492. // Segment flag bits.
  1493. enum : unsigned {
  1494. PF_X = 1, // Execute
  1495. PF_W = 2, // Write
  1496. PF_R = 4, // Read
  1497. PF_MASKOS = 0x0ff00000,// Bits for operating system-specific semantics.
  1498. PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics.
  1499. };
  1500. // Dynamic table entry for ELF32.
  1501. struct Elf32_Dyn
  1502. {
  1503. Elf32_Sword d_tag; // Type of dynamic table entry.
  1504. union
  1505. {
  1506. Elf32_Word d_val; // Integer value of entry.
  1507. Elf32_Addr d_ptr; // Pointer value of entry.
  1508. } d_un;
  1509. };
  1510. // Dynamic table entry for ELF64.
  1511. struct Elf64_Dyn
  1512. {
  1513. Elf64_Sxword d_tag; // Type of dynamic table entry.
  1514. union
  1515. {
  1516. Elf64_Xword d_val; // Integer value of entry.
  1517. Elf64_Addr d_ptr; // Pointer value of entry.
  1518. } d_un;
  1519. };
  1520. // Dynamic table entry tags.
  1521. enum {
  1522. DT_NULL = 0, // Marks end of dynamic array.
  1523. DT_NEEDED = 1, // String table offset of needed library.
  1524. DT_PLTRELSZ = 2, // Size of relocation entries in PLT.
  1525. DT_PLTGOT = 3, // Address associated with linkage table.
  1526. DT_HASH = 4, // Address of symbolic hash table.
  1527. DT_STRTAB = 5, // Address of dynamic string table.
  1528. DT_SYMTAB = 6, // Address of dynamic symbol table.
  1529. DT_RELA = 7, // Address of relocation table (Rela entries).
  1530. DT_RELASZ = 8, // Size of Rela relocation table.
  1531. DT_RELAENT = 9, // Size of a Rela relocation entry.
  1532. DT_STRSZ = 10, // Total size of the string table.
  1533. DT_SYMENT = 11, // Size of a symbol table entry.
  1534. DT_INIT = 12, // Address of initialization function.
  1535. DT_FINI = 13, // Address of termination function.
  1536. DT_SONAME = 14, // String table offset of a shared objects name.
  1537. DT_RPATH = 15, // String table offset of library search path.
  1538. DT_SYMBOLIC = 16, // Changes symbol resolution algorithm.
  1539. DT_REL = 17, // Address of relocation table (Rel entries).
  1540. DT_RELSZ = 18, // Size of Rel relocation table.
  1541. DT_RELENT = 19, // Size of a Rel relocation entry.
  1542. DT_PLTREL = 20, // Type of relocation entry used for linking.
  1543. DT_DEBUG = 21, // Reserved for debugger.
  1544. DT_TEXTREL = 22, // Relocations exist for non-writable segments.
  1545. DT_JMPREL = 23, // Address of relocations associated with PLT.
  1546. DT_BIND_NOW = 24, // Process all relocations before execution.
  1547. DT_INIT_ARRAY = 25, // Pointer to array of initialization functions.
  1548. DT_FINI_ARRAY = 26, // Pointer to array of termination functions.
  1549. DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY.
  1550. DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY.
  1551. DT_RUNPATH = 29, // String table offset of lib search path.
  1552. DT_FLAGS = 30, // Flags.
  1553. DT_ENCODING = 32, // Values from here to DT_LOOS follow the rules
  1554. // for the interpretation of the d_un union.
  1555. DT_PREINIT_ARRAY = 32, // Pointer to array of preinit functions.
  1556. DT_PREINIT_ARRAYSZ = 33, // Size of the DT_PREINIT_ARRAY array.
  1557. DT_LOOS = 0x60000000, // Start of environment specific tags.
  1558. DT_HIOS = 0x6FFFFFFF, // End of environment specific tags.
  1559. DT_LOPROC = 0x70000000, // Start of processor specific tags.
  1560. DT_HIPROC = 0x7FFFFFFF, // End of processor specific tags.
  1561. DT_GNU_HASH = 0x6FFFFEF5, // Reference to the GNU hash table.
  1562. DT_RELACOUNT = 0x6FFFFFF9, // ELF32_Rela count.
  1563. DT_RELCOUNT = 0x6FFFFFFA, // ELF32_Rel count.
  1564. DT_FLAGS_1 = 0X6FFFFFFB, // Flags_1.
  1565. DT_VERSYM = 0x6FFFFFF0, // The address of .gnu.version section.
  1566. DT_VERDEF = 0X6FFFFFFC, // The address of the version definition table.
  1567. DT_VERDEFNUM = 0X6FFFFFFD, // The number of entries in DT_VERDEF.
  1568. DT_VERNEED = 0X6FFFFFFE, // The address of the version Dependency table.
  1569. DT_VERNEEDNUM = 0X6FFFFFFF, // The number of entries in DT_VERNEED.
  1570. // Mips specific dynamic table entry tags.
  1571. DT_MIPS_RLD_VERSION = 0x70000001, // 32 bit version number for runtime
  1572. // linker interface.
  1573. DT_MIPS_TIME_STAMP = 0x70000002, // Time stamp.
  1574. DT_MIPS_ICHECKSUM = 0x70000003, // Checksum of external strings
  1575. // and common sizes.
  1576. DT_MIPS_IVERSION = 0x70000004, // Index of version string
  1577. // in string table.
  1578. DT_MIPS_FLAGS = 0x70000005, // 32 bits of flags.
  1579. DT_MIPS_BASE_ADDRESS = 0x70000006, // Base address of the segment.
  1580. DT_MIPS_MSYM = 0x70000007, // Address of .msym section.
  1581. DT_MIPS_CONFLICT = 0x70000008, // Address of .conflict section.
  1582. DT_MIPS_LIBLIST = 0x70000009, // Address of .liblist section.
  1583. DT_MIPS_LOCAL_GOTNO = 0x7000000a, // Number of local global offset
  1584. // table entries.
  1585. DT_MIPS_CONFLICTNO = 0x7000000b, // Number of entries
  1586. // in the .conflict section.
  1587. DT_MIPS_LIBLISTNO = 0x70000010, // Number of entries
  1588. // in the .liblist section.
  1589. DT_MIPS_SYMTABNO = 0x70000011, // Number of entries
  1590. // in the .dynsym section.
  1591. DT_MIPS_UNREFEXTNO = 0x70000012, // Index of first external dynamic symbol
  1592. // not referenced locally.
  1593. DT_MIPS_GOTSYM = 0x70000013, // Index of first dynamic symbol
  1594. // in global offset table.
  1595. DT_MIPS_HIPAGENO = 0x70000014, // Number of page table entries
  1596. // in global offset table.
  1597. DT_MIPS_RLD_MAP = 0x70000016, // Address of run time loader map,
  1598. // used for debugging.
  1599. DT_MIPS_DELTA_CLASS = 0x70000017, // Delta C++ class definition.
  1600. DT_MIPS_DELTA_CLASS_NO = 0x70000018, // Number of entries
  1601. // in DT_MIPS_DELTA_CLASS.
  1602. DT_MIPS_DELTA_INSTANCE = 0x70000019, // Delta C++ class instances.
  1603. DT_MIPS_DELTA_INSTANCE_NO = 0x7000001A, // Number of entries
  1604. // in DT_MIPS_DELTA_INSTANCE.
  1605. DT_MIPS_DELTA_RELOC = 0x7000001B, // Delta relocations.
  1606. DT_MIPS_DELTA_RELOC_NO = 0x7000001C, // Number of entries
  1607. // in DT_MIPS_DELTA_RELOC.
  1608. DT_MIPS_DELTA_SYM = 0x7000001D, // Delta symbols that Delta
  1609. // relocations refer to.
  1610. DT_MIPS_DELTA_SYM_NO = 0x7000001E, // Number of entries
  1611. // in DT_MIPS_DELTA_SYM.
  1612. DT_MIPS_DELTA_CLASSSYM = 0x70000020, // Delta symbols that hold
  1613. // class declarations.
  1614. DT_MIPS_DELTA_CLASSSYM_NO = 0x70000021, // Number of entries
  1615. // in DT_MIPS_DELTA_CLASSSYM.
  1616. DT_MIPS_CXX_FLAGS = 0x70000022, // Flags indicating information
  1617. // about C++ flavor.
  1618. DT_MIPS_PIXIE_INIT = 0x70000023, // Pixie information.
  1619. DT_MIPS_SYMBOL_LIB = 0x70000024, // Address of .MIPS.symlib
  1620. DT_MIPS_LOCALPAGE_GOTIDX = 0x70000025, // The GOT index of the first PTE
  1621. // for a segment
  1622. DT_MIPS_LOCAL_GOTIDX = 0x70000026, // The GOT index of the first PTE
  1623. // for a local symbol
  1624. DT_MIPS_HIDDEN_GOTIDX = 0x70000027, // The GOT index of the first PTE
  1625. // for a hidden symbol
  1626. DT_MIPS_PROTECTED_GOTIDX = 0x70000028, // The GOT index of the first PTE
  1627. // for a protected symbol
  1628. DT_MIPS_OPTIONS = 0x70000029, // Address of `.MIPS.options'.
  1629. DT_MIPS_INTERFACE = 0x7000002A, // Address of `.interface'.
  1630. DT_MIPS_DYNSTR_ALIGN = 0x7000002B, // Unknown.
  1631. DT_MIPS_INTERFACE_SIZE = 0x7000002C, // Size of the .interface section.
  1632. DT_MIPS_RLD_TEXT_RESOLVE_ADDR = 0x7000002D, // Size of rld_text_resolve
  1633. // function stored in the GOT.
  1634. DT_MIPS_PERF_SUFFIX = 0x7000002E, // Default suffix of DSO to be added
  1635. // by rld on dlopen() calls.
  1636. DT_MIPS_COMPACT_SIZE = 0x7000002F, // Size of compact relocation
  1637. // section (O32).
  1638. DT_MIPS_GP_VALUE = 0x70000030, // GP value for auxiliary GOTs.
  1639. DT_MIPS_AUX_DYNAMIC = 0x70000031, // Address of auxiliary .dynamic.
  1640. DT_MIPS_PLTGOT = 0x70000032, // Address of the base of the PLTGOT.
  1641. DT_MIPS_RWPLT = 0x70000034 // Points to the base
  1642. // of a writable PLT.
  1643. };
  1644. // DT_FLAGS values.
  1645. enum {
  1646. DF_ORIGIN = 0x01, // The object may reference $ORIGIN.
  1647. DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe.
  1648. DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment.
  1649. DF_BIND_NOW = 0x08, // Process all relocations on load.
  1650. DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically.
  1651. };
  1652. // State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry.
  1653. enum {
  1654. DF_1_NOW = 0x00000001, // Set RTLD_NOW for this object.
  1655. DF_1_GLOBAL = 0x00000002, // Set RTLD_GLOBAL for this object.
  1656. DF_1_GROUP = 0x00000004, // Set RTLD_GROUP for this object.
  1657. DF_1_NODELETE = 0x00000008, // Set RTLD_NODELETE for this object.
  1658. DF_1_LOADFLTR = 0x00000010, // Trigger filtee loading at runtime.
  1659. DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object.
  1660. DF_1_NOOPEN = 0x00000040, // Set RTLD_NOOPEN for this object.
  1661. DF_1_ORIGIN = 0x00000080, // $ORIGIN must be handled.
  1662. DF_1_DIRECT = 0x00000100, // Direct binding enabled.
  1663. DF_1_TRANS = 0x00000200,
  1664. DF_1_INTERPOSE = 0x00000400, // Object is used to interpose.
  1665. DF_1_NODEFLIB = 0x00000800, // Ignore default lib search path.
  1666. DF_1_NODUMP = 0x00001000, // Object can't be dldump'ed.
  1667. DF_1_CONFALT = 0x00002000, // Configuration alternative created.
  1668. DF_1_ENDFILTEE = 0x00004000, // Filtee terminates filters search.
  1669. DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time.
  1670. DF_1_DISPRELPND = 0x00010000 // Disp reloc applied at run-time.
  1671. };
  1672. // DT_MIPS_FLAGS values.
  1673. enum {
  1674. RHF_NONE = 0x00000000, // No flags.
  1675. RHF_QUICKSTART = 0x00000001, // Uses shortcut pointers.
  1676. RHF_NOTPOT = 0x00000002, // Hash size is not a power of two.
  1677. RHS_NO_LIBRARY_REPLACEMENT = 0x00000004, // Ignore LD_LIBRARY_PATH.
  1678. RHF_NO_MOVE = 0x00000008, // DSO address may not be relocated.
  1679. RHF_SGI_ONLY = 0x00000010, // SGI specific features.
  1680. RHF_GUARANTEE_INIT = 0x00000020, // Guarantee that .init will finish
  1681. // executing before any non-init
  1682. // code in DSO is called.
  1683. RHF_DELTA_C_PLUS_PLUS = 0x00000040, // Contains Delta C++ code.
  1684. RHF_GUARANTEE_START_INIT = 0x00000080, // Guarantee that .init will start
  1685. // executing before any non-init
  1686. // code in DSO is called.
  1687. RHF_PIXIE = 0x00000100, // Generated by pixie.
  1688. RHF_DEFAULT_DELAY_LOAD = 0x00000200, // Delay-load DSO by default.
  1689. RHF_REQUICKSTART = 0x00000400, // Object may be requickstarted
  1690. RHF_REQUICKSTARTED = 0x00000800, // Object has been requickstarted
  1691. RHF_CORD = 0x00001000, // Generated by cord.
  1692. RHF_NO_UNRES_UNDEF = 0x00002000, // Object contains no unresolved
  1693. // undef symbols.
  1694. RHF_RLD_ORDER_SAFE = 0x00004000 // Symbol table is in a safe order.
  1695. };
  1696. // ElfXX_VerDef structure version (GNU versioning)
  1697. enum {
  1698. VER_DEF_NONE = 0,
  1699. VER_DEF_CURRENT = 1
  1700. };
  1701. // VerDef Flags (ElfXX_VerDef::vd_flags)
  1702. enum {
  1703. VER_FLG_BASE = 0x1,
  1704. VER_FLG_WEAK = 0x2,
  1705. VER_FLG_INFO = 0x4
  1706. };
  1707. // Special constants for the version table. (SHT_GNU_versym/.gnu.version)
  1708. enum {
  1709. VER_NDX_LOCAL = 0, // Unversioned local symbol
  1710. VER_NDX_GLOBAL = 1, // Unversioned global symbol
  1711. VERSYM_VERSION = 0x7fff, // Version Index mask
  1712. VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version)
  1713. };
  1714. // ElfXX_VerNeed structure version (GNU versioning)
  1715. enum {
  1716. VER_NEED_NONE = 0,
  1717. VER_NEED_CURRENT = 1
  1718. };
  1719. struct ElfTypes32 {
  1720. typedef Elf32_Addr Addr;
  1721. typedef Elf32_Off Off;
  1722. typedef Elf32_Half Half;
  1723. typedef Elf32_Word Word;
  1724. typedef Elf32_Sword Sword;
  1725. typedef Elf32_Ehdr Ehdr;
  1726. typedef Elf32_Shdr Shdr;
  1727. typedef Elf32_Sym Sym;
  1728. typedef Elf32_Rel Rel;
  1729. typedef Elf32_Rela Rela;
  1730. typedef Elf32_Phdr Phdr;
  1731. typedef Elf32_Dyn Dyn;
  1732. };
  1733. struct ElfTypes64 {
  1734. typedef Elf64_Addr Addr;
  1735. typedef Elf64_Off Off;
  1736. typedef Elf64_Half Half;
  1737. typedef Elf64_Word Word;
  1738. typedef Elf64_Sword Sword;
  1739. typedef Elf64_Xword Xword;
  1740. typedef Elf64_Sxword Sxword;
  1741. typedef Elf64_Ehdr Ehdr;
  1742. typedef Elf64_Shdr Shdr;
  1743. typedef Elf64_Sym Sym;
  1744. typedef Elf64_Rel Rel;
  1745. typedef Elf64_Rela Rela;
  1746. typedef Elf64_Phdr Phdr;
  1747. typedef Elf64_Dyn Dyn;
  1748. };
  1749. #endif //TELF_H

运行encryptSection.cpp,打印显示如下

那么现在在lib目录下的libdemo.so就是一个被加密特定section的so文件

(四)被加密so文件的使用

使用这个被加密特定section的so有两种方法,第一种就是新建一个app工程调用它,第二种是将在(一)中编译产生的app-debug.apk进行反编译,替换调原来的so,再重打包,签名,最后安装。

第二种试过,可以用,这里我们采用第一种方法。

1.as中新建一个工程,选择empty activity,创建完成后,修改并添加目录结构如下:

MainActivity.java代码如下:

  1. package com.encode.sofile;
  2. import androidx.appcompat.app.AppCompatActivity;
  3. import android.os.Bundle;
  4. import android.widget.TextView;
  5. public class MainActivity extends AppCompatActivity {
  6. static {
  7. System.loadLibrary("demo");
  8. }
  9. @Override
  10. protected void onCreate(Bundle savedInstanceState) {
  11. super.onCreate(savedInstanceState);
  12. setContentView(R.layout.activity_main);
  13. // Example of a call to a native method
  14. TextView tv = findViewById(R.id.sample_text);
  15. tv.setText(getString());
  16. }
  17. public native String getString();
  18. }

注意这个包路径一定要和(一)中的包路径一样

build.gradle代码如下:

  1. apply plugin: 'com.android.application'
  2. android {
  3. compileSdkVersion 30
  4. buildToolsVersion "30.0.2"
  5. defaultConfig {
  6. applicationId "com.encode.sofile"
  7. minSdkVersion 21
  8. targetSdkVersion 30
  9. versionCode 1
  10. versionName "1.0"
  11. testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
  12. }
  13. buildTypes {
  14. release {
  15. minifyEnabled false
  16. proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
  17. }
  18. }
  19. // 需要添加如下代码
  20. sourceSets{
  21. main{
  22. jniLibs.srcDirs=['libs']
  23. }
  24. }
  25. }
  26. dependencies {
  27. implementation fileTree(dir: "libs", include: ["*.jar"])
  28. implementation 'androidx.appcompat:appcompat:1.2.0'
  29. implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
  30. testImplementation 'junit:junit:4.12'
  31. androidTestImplementation 'androidx.test.ext:junit:1.1.2'
  32. androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'
  33. }

编译并安装app,日志打印如下:

  1. com.encode.sofile I/testApp: base:0xf4274000 nblock:0x38 nsize:0x3
  2. com.encode.sofile I/testApp: addr:80
  3. com.encode.sofile I/testApp: addr:b5
  4. com.encode.sofile I/testApp: addr:6f
  5. com.encode.sofile I/testApp: addr:46
  6. com.encode.sofile I/testApp: addr:82
  7. com.encode.sofile I/testApp: addr:b0
  8. com.encode.sofile I/testApp: addr:1
  9. com.encode.sofile I/testApp: addr:90
  10. com.encode.sofile I/testApp: addr:8
  11. com.encode.sofile I/testApp: addr:49
  12. com.encode.sofile I/testApp: addr:79
  13. com.encode.sofile I/testApp: addr:44
  14. com.encode.sofile I/testApp: addr:8
  15. com.encode.sofile I/testApp: addr:4a
  16. com.encode.sofile I/testApp: addr:7a
  17. com.encode.sofile I/testApp: addr:44
  18. com.encode.sofile I/testApp: addr:4
  19. com.encode.sofile I/testApp: addr:20
  20. com.encode.sofile I/testApp: addr:fe
  21. com.encode.sofile I/testApp: addr:f7
  22. com.encode.sofile I/testApp: addr:ba
  23. com.encode.sofile I/testApp: addr:ea
  24. com.encode.sofile I/testApp: addr:1
  25. com.encode.sofile I/testApp: addr:99
  26. com.encode.sofile I/testApp: addr:6
  27. com.encode.sofile I/testApp: addr:4a
  28. com.encode.sofile I/testApp: addr:7a
  29. com.encode.sofile I/testApp: addr:44
  30. com.encode.sofile I/testApp: addr:0
  31. com.encode.sofile I/testApp: addr:90
  32. com.encode.sofile I/testApp: addr:8
  33. com.encode.sofile I/testApp: addr:46
  34. com.encode.sofile I/testApp: addr:11
  35. com.encode.sofile I/testApp: addr:46
  36. com.encode.sofile I/testApp: addr:fe
  37. com.encode.sofile I/testApp: addr:f7
  38. com.encode.sofile I/testApp: addr:b8
  39. com.encode.sofile I/testApp: addr:ea
  40. com.encode.sofile I/testApp: addr:2
  41. com.encode.sofile I/testApp: addr:b0
  42. com.encode.sofile I/testApp: addr:80
  43. com.encode.sofile I/testApp: addr:bd
  44. com.encode.sofile I/testApp: addr:0
  45. com.encode.sofile I/testApp: addr:bf
  46. com.encode.sofile I/testApp: addr:96
  47. com.encode.sofile I/testApp: addr:3
  48. com.encode.sofile I/testApp: addr:0
  49. com.encode.sofile I/testApp: addr:0
  50. com.encode.sofile I/testApp: addr:9a
  51. com.encode.sofile I/testApp: addr:3
  52. com.encode.sofile I/testApp: addr:0
  53. com.encode.sofile I/testApp: addr:0
  54. com.encode.sofile I/testApp: addr:aa
  55. com.encode.sofile I/testApp: addr:3
  56. com.encode.sofile I/testApp: addr:0
  57. com.encode.sofile I/testApp: addr:0
  58. com.encode.sofile I/testApp: Decrypt success
  59. com.encode.sofile I/testApp: 加载成功111111!!!

并且app正常加载,经测试发现该app在android 6可以正常加载,但是在android 7.1  8.0 测试报错:dlopen failed: "/data/app/com.encode.sofile-lB_-BwHxKfanaXEfodP92w==/lib/arm/libdemo.so" .dynamic section header was not found。

原因是:Android7.0后JNI库必须保留Section Headers。由于加密时修改了shoff值,导致加载so时解析Section Headers 解析不了。

解决方案:shoff和entry目的是为了存储加密的偏移大小和加密的大小。我们可以使用entry高低16位来分别存储着两个值。即可解决该问题。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/喵喵爱编程/article/detail/766791
推荐阅读
相关标签
  

闽ICP备14008679号