赞
踩
public interface Set<E> {
void add(E e);
boolean contains(E e);
void remove(E e);
int getSize();
boolean isEmpty();
}
public class BST<E extends Comparable<E>> { private class Node{ public E e; public Node left, right; public Node(E e){ this.e = e; left = null; right = null; } } private Node root; private int size; public BST(){ root = null; size = 0; } public int size(){ return size; } public boolean isEmpty(){ return size == 0; } // 向二分搜索树中添加新的元素e public void add(E e){ root = add(root, e); } // 向以node为根的二分搜索树中插入元素e,递归算法 // 返回插入新节点后二分搜索树的根 private Node add(Node node, E e){ if(node == null){ size ++; return new Node(e); } if(e.compareTo(node.e) < 0) node.left = add(node.left, e); else if(e.compareTo(node.e) > 0) node.right = add(node.right, e); return node; } // 看二分搜索树中是否包含元素e public boolean contains(E e){ return contains(root, e); } // 看以node为根的二分搜索树中是否包含元素e, 递归算法 private boolean contains(Node node, E e){ if(node == null) return false; if(e.compareTo(node.e) == 0) return true; else if(e.compareTo(node.e) < 0) return contains(node.left, e); else // e.compareTo(node.e) > 0 return contains(node.right, e); } // 二分搜索树的前序遍历 public void preOrder(){ preOrder(root); } // 前序遍历以node为根的二分搜索树, 递归算法 private void preOrder(Node node){ if(node == null) return; System.out.println(node.e); preOrder(node.left); preOrder(node.right); } // 二分搜索树的非递归前序遍历 public void preOrderNR(){ Stack<Node> stack = new Stack<>(); stack.push(root); while(!stack.isEmpty()){ Node cur = stack.pop(); System.out.println(cur.e); if(cur.right != null) stack.push(cur.right); if(cur.left != null) stack.push(cur.left); } } // 二分搜索树的中序遍历 public void inOrder(){ inOrder(root); } // 中序遍历以node为根的二分搜索树, 递归算法 private void inOrder(Node node){ if(node == null) return; inOrder(node.left); System.out.println(node.e); inOrder(node.right); } // 二分搜索树的后序遍历 public void postOrder(){ postOrder(root); } // 后序遍历以node为根的二分搜索树, 递归算法 private void postOrder(Node node){ if(node == null) return; postOrder(node.left); postOrder(node.right); System.out.println(node.e); } // 二分搜索树的层序遍历 public void levelOrder(){ Queue<Node> q = new LinkedList<>(); q.add(root); while(!q.isEmpty()){ Node cur = q.remove(); System.out.println(cur.e); if(cur.left != null) q.add(cur.left); if(cur.right != null) q.add(cur.right); } } // 寻找二分搜索树的最小元素 public E minimum(){ if(size == 0) throw new IllegalArgumentException("BST is empty!"); return minimum(root).e; } // 返回以node为根的二分搜索树的最小值所在的节点 private Node minimum(Node node){ if(node.left == null) return node; return minimum(node.left); } // 寻找二分搜索树的最大元素 public E maximum(){ if(size == 0) throw new IllegalArgumentException("BST is empty"); return maximum(root).e; } // 返回以node为根的二分搜索树的最大值所在的节点 private Node maximum(Node node){ if(node.right == null) return node; return maximum(node.right); } // 从二分搜索树中删除最小值所在节点, 返回最小值 public E removeMin(){ E ret = minimum(); root = removeMin(root); return ret; } // 删除掉以node为根的二分搜索树中的最小节点 // 返回删除节点后新的二分搜索树的根 private Node removeMin(Node node){ if(node.left == null){ Node rightNode = node.right; node.right = null; size --; return rightNode; } node.left = removeMin(node.left); return node; } // 从二分搜索树中删除最大值所在节点 public E removeMax(){ E ret = maximum(); root = removeMax(root); return ret; } // 删除掉以node为根的二分搜索树中的最大节点 // 返回删除节点后新的二分搜索树的根 private Node removeMax(Node node){ if(node.right == null){ Node leftNode = node.left; node.left = null; size --; return leftNode; } node.right = removeMax(node.right); return node; } // 从二分搜索树中删除元素为e的节点 public void remove(E e){ root = remove(root, e); } // 删除掉以node为根的二分搜索树中值为e的节点, 递归算法 // 返回删除节点后新的二分搜索树的根 private Node remove(Node node, E e){ if( node == null ) return null; if( e.compareTo(node.e) < 0 ){ node.left = remove(node.left , e); return node; } else if(e.compareTo(node.e) > 0 ){ node.right = remove(node.right, e); return node; } else{ // e.compareTo(node.e) == 0 // 待删除节点左子树为空的情况 if(node.left == null){ Node rightNode = node.right; node.right = null; size --; return rightNode; } // 待删除节点右子树为空的情况 if(node.right == null){ Node leftNode = node.left; node.left = null; size --; return leftNode; } // 待删除节点左右子树均不为空的情况 // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点 // 用这个节点顶替待删除节点的位置 Node successor = minimum(node.right); successor.right = removeMin(node.right); successor.left = node.left; node.left = node.right = null; return successor; } } @Override public String toString(){ StringBuilder res = new StringBuilder(); generateBSTString(root, 0, res); return res.toString(); } // 生成以node为根节点,深度为depth的描述二叉树的字符串 private void generateBSTString(Node node, int depth, StringBuilder res){ if(node == null){ res.append(generateDepthString(depth) + "null\n"); return; } res.append(generateDepthString(depth) + node.e +"\n"); generateBSTString(node.left, depth + 1, res); generateBSTString(node.right, depth + 1, res); } private String generateDepthString(int depth){ StringBuilder res = new StringBuilder(); for(int i = 0 ; i < depth ; i ++) res.append("--"); return res.toString(); } }
public class BSTSet<E extends Comparable<E>> implements Set<E> { private BST<E> bst; public BSTSet(){ bst = new BST<>(); } @Override public int getSize(){ return bst.size(); } @Override public boolean isEmpty(){ return bst.isEmpty(); } @Override public void add(E e){ bst.add(e); } @Override public boolean contains(E e){ return bst.contains(e); } @Override public void remove(E e){ bst.remove(e); } }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。