赞
踩
testkuaibao|软件测试自学公众号
一、引言
小编新接触语音SDK项目,SDK无UI、底层调用多个C++算法库、提供的是AI服务。语音AI项目,识别效果是至关重要的一环,识别效果评测也是一项测试重点。为了制定一个专业、全面的效果评测的方案,小编学习了相关知识,对方案制定有了初步思路。希望对测试小伙伴有所帮助~~(●—●)
二、ASR流程、系统结构、评测指标及评测模型
1、语音识别(Automatic Speech Recognition,ASR)
语音识别,也被称自动语音识别,所要解决的问题是让机器能够“听懂”人类的语音,将语音中包含的文字信息“提取”出来,相当于给机器安装上“耳朵”,使其具备“能听”的功能。
语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别的目标是将人类的语音内容转换为相应的文字。
2、语音识别基本流程、系统结构
语音识别原理的4个基本流程:“输入——编码——解码——输出”
语音识别系统本质上是一种模式识别系统,主要包括信号处理和特征提取、声学模型(AM)、语言模型(LM)和解码搜索四部分。
3、ASR评测模型
评测模型,各家评测模型殊途同归。下图参考为例:
首先要有测试的数据集,测试的数据集也是有一段音频和标注。标注的就是标注音频内容,说的是什么。注意:评测的数据集和训练的数据集是严格隔离的。
准备好数据集后,SDK读取数据集中的音频(批量评测),每条音频都严格按照待识别效果评测模块的实际逻辑流程,得到每条音频的识别结果,最后
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。