当前位置:   article > 正文

阿里天池机器学习训练营-XGBoost_xgboost 在线训练平台

xgboost 在线训练平台

本学习笔记为阿里云天池龙珠计划机器学习训练营的学习内容,学习链接为:https://tianchi.aliyun.com/specials/promotion/aicampml

XGBoost介绍

XGBoost是2016年由华盛顿大学陈天奇老师带领开发的一个可扩展机器学习系统。严格意义上讲XGBoost并不是一种模型,而是一个可供用户轻松解决分类、回归或排序问题的软件包。它内部实现了梯度提升树(GBDT)模型,并对模型中的算法进行了诸多优化,在取得高精度的同时又保持了极快的速度,在一段时间内成为了国内外数据挖掘、机器学习领域中的大规模杀伤性武器。

更重要的是,XGBoost在系统优化和机器学习原理方面都进行了深入的考虑。毫不夸张的讲,XGBoost提供的可扩展性,可移植性与准确性推动了机器学习计算限制的上限,该系统在单台机器上运行速度比当时流行解决方案快十倍以上,甚至在分布式系统中可以处理十亿级的数据。

XGBoost的主要优点:

  • 简单易用。相对其他机器学习库,用户可以轻松使用XGBoost并获得相当不错的效果。
  • 高效可扩展。在处理大规模数据集时速度快效果好,对内存等硬件资源要求不高。
  • 鲁棒性强。相对于深度学习模型不需要精细调参便能取得接近的效果。
  • XGBoost内部实现提升树模型,可以自动处理缺失值。

XGBoost的主要缺点:

  • 相对于深度学习模型无法对时空位置建模,不能很好地捕获图像、语音、文本等高维数据。
  • 在拥有海量训练数据,并能找到合适的深度学习模型时,深度学习的精度可以遥遥领先XGBoost。

XGBoost在机器学习与数据挖掘领域有着极为广泛的应用。据统计在2015年Kaggle平台上29个获奖方案中,17只队伍使用了XGBoost;在2015年KDD-Cup中,前十名的队伍均使用了XGBoost,且集成其他模型比不上调节XGBoost的参数所带来的提升。这些实实在在的例子都表明,XGBoost在各种问题上都可以取得非常好的效果。

同时,XGBoost还被成功应用在工业界与学术界的各种问题中。例如商店销售额预测、高能物理事件分类、web文本分类;用户行为预测、运动检测、广告点击率预测、恶意软件分类、灾害风险预测、在线课程退学率预测。虽然领域相关的数据分析和特性工程在这些解决方案中也发挥了重要作用,但学习者与实践者对XGBoost的一致选择表明了这一软件包的影响力与重要性。

算法流程

Step1: 库函数导入
Step2: 数据读取/载入
Step3: 数据信息简单查看
Step4: 可视化描述
Step5: 对离散变量进行编码
Step6: 利用 XGBoost 进行训练与预测
Step7: 利用 XGBoost 进行特征选择
Step8: 通过调整参数获得更好的效果

基于天气数据集的XGBoost分类实战

Step5:对离散变量进行编码

由于XGBoost无法处理字符串类型的数据,我们需要一些方法讲字符串数据转化为数据。

一种最简单的方法是把所有的相同类别的特征编码成同一个值。

除此之外,还有独热编码、求和编码、留一法编码等等方法可以获得更好的效果。

## 把所有的相同类别的特征编码为同一个值
def get_mapfunction(x):
    mapp = dict(zip(x.unique().tolist(),
         range(len(x.unique().tolist()))))
    def mapfunction(y):
        if y in mapp:
            return mapp[y]
        else:
            return -1
    return mapfunction
for i in category_features:
    data[i] = data[i].apply(get_mapfunction(data[i]))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

One-Hot编码

又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。
在这里插入图片描述
使用ONE-HOT的原因:无论在回归、分类、聚类等算法中,在欧氏空间上的距离通常是计算相似度的重要指标(回归的LOSS函数,KNN和KMEANS的距离)。如果使用简单的1、2、3顺序编码,会导致各个离散点之间在欧式空间上的距离不一致,从而影响到最终的结果。而ONE-HOT编码能够保证各个离散点之间在欧氏空间上的距离是完全相等的。

优点:独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。

缺点:当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。

如何确定是否需要使用ONE-HOT编码?
用:独热编码用来解决类别型数据的离散值问题

不用:将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码。

from sklearn import preprocessing
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])    # fit来学习编码
enc.transform([[0, 1, 3]]).toarray()    # 进行编码
  • 1
  • 2
  • 3
  • 4

Step6: 利用 XGBoost 进行训练与预测

拆分训练集和测试集。因电脑性能不足,不采用交叉验证

## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split

## 选择其类别为0和1的样本 (不包括类别为2的样本)
data_target_part = data['RainTomorrow']
data_features_part = data[[x for x in data.columns if x != 'RainTomorrow']]

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(data_features_part, data_target_part, test_size = 0.2, random_state = 2020)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

导入并训练模型

## 导入XGBoost模型
from xgboost.sklearn import XGBClassifier
## 定义 XGBoost模型 
clf = XGBClassifier()
# 在训练集上训练XGBoost模型
clf.fit(x_train, y_train)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

预测并用ACCURACY和混淆矩阵进行评估

## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
# The accuracy of the Logistic Regression is: 0.8517142354802789
# The accuracy of the Logistic Regression is: 0.8469689155609733
#The confusion matrix result:
#  [[15759  2470]
#  [  794  2306]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

Step7: 利用 XGBoost 进行特征选择

在XGboost中可以用以下几个属性来评估特种重要性:

  • feature_importances_去查看特征的重要度。
  • weight:是以特征用到的次数来评价
  • gain:当利用特征做划分的时候的评价基尼指数
  • cover:利用一个覆盖样本的指标二阶导数(具体原理不清楚有待探究)平均值来划分。
  • total_gain:总基尼指数
  • total_cover:总覆盖
sns.barplot(y=data_features_part.columns, x=clf.feature_importances_)
  • 1

在这里插入图片描述

from sklearn.metrics import accuracy_score
from xgboost import plot_importance

def estimate(model,data):

    #sns.barplot(data.columns,model.feature_importances_)
    ax1=plot_importance(model,importance_type="gain")
    ax1.set_title('gain')
    ax2=plot_importance(model, importance_type="weight")
    ax2.set_title('weight')
    ax3 = plot_importance(model, importance_type="cover")
    ax3.set_title('cover')
    plt.show()
def classes(data,label,test):
    model=XGBClassifier()
    model.fit(data,label)
    ans=model.predict(test)
    estimate(model, data)
    return ans
 
ans=classes(x_train,y_train,x_test)
pre=accuracy_score(y_test, ans)
print('acc=',accuracy_score(y_test,ans))

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

在这里插入图片描述

Step8: 通过调整参数获得更好的效果

XGBoost中包括但不限于下列对模型影响较大的参数:

  • learning_rate: 有时也叫作eta,系统默认值为0.3。每一步迭代的步长,很重要。太大了运行准确率不高,太小了运行速度慢。
  • subsample:系统默认为1。这个参数控制对于每棵树,随机采样的比例。减小这个参数的值,算法会更加保守,避免过拟合, 取值范围零到一。
  • colsample_bytree:系统默认值为1。我们一般设置成0.8左右。用来控制每棵随机采样的列数的占比(每一列是一个特征)。
  • max_depth: 系统默认值为6,我们常用3-10之间的数字。这个值为树的最大深度。这个值是用来控制过拟合的。max_depth越大,模型学习的更加具体。

调节模型参数的方法有贪心算法、网格调参、贝叶斯调参等。 这里我们采用网格调参,它的基本思想是穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果

## 从sklearn库中导入网格调参函数
from sklearn.model_selection import GridSearchCV

## 定义参数取值范围
learning_rate = [0.1, 0.3, 0.6]
subsample = [0.8, 0.9]
colsample_bytree = [0.6, 0.8]
max_depth = [3,5,8]

parameters = { 'learning_rate': learning_rate,
              'subsample': subsample,
              'colsample_bytree':colsample_bytree,
              'max_depth': max_depth}
model = XGBClassifier(n_estimators = 50)

## 进行网格搜索
clf = GridSearchCV(model, parameters, cv=3, scoring='accuracy',verbose=1,n_jobs=-1)
clf = clf.fit(x_train, y_train)
## 网格搜索后的最好参数为
clf.best_params_
#{'colsample_bytree': 0.6,
#, 'learning_rate': 0.3,
#, 'max_depth': 8,
#, 'subsample': 0.9}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

代入参数重新验证

## 在训练集和测试集上分布利用最好的模型参数进行预测

## 定义带参数的 XGBoost模型 
clf = XGBClassifier(colsample_bytree = 0.6, learning_rate = 0.3, max_depth= 8, subsample = 0.9)
# 在训练集上训练XGBoost模型
clf.fit(x_train, y_train)

train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
# The accuracy of the Logistic Regression is: 0.9414522651350876
# The accuracy of the Logistic Regression is: 0.8569553190491819
# The confusion matrix result:
#  [[15614  2112]
#  [  939  2664]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

XGBoost的重要参数

1.eta[默认0.3]
通过为每一颗树增加权重,提高模型的鲁棒性。
典型值为0.01-0.2。

2.min_child_weight[默认1]
决定最小叶子节点样本权重和。
这个参数可以避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。
但是如果这个值过高,则会导致模型拟合不充分。

3.max_depth[默认6]
这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。
典型值:3-10

4.max_leaf_nodes
树上最大的节点或叶子的数量。
可以替代max_depth的作用。
这个参数的定义会导致忽略max_depth参数。

5.gamma[默认0]
在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。
这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关。

6.max_delta_step[默认0]
这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。
但是当各类别的样本十分不平衡时,它对分类问题是很有帮助的。

7.subsample[默认1]
这个参数控制对于每棵树,随机采样的比例。
减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。
典型值:0.5-1

8.colsample_bytree[默认1]
用来控制每棵随机采样的列数的占比(每一列是一个特征)。
典型值:0.5-1

9.colsample_bylevel[默认1]
用来控制树的每一级的每一次分裂,对列数的采样的占比。
subsample参数和colsample_bytree参数可以起到相同的作用,一般用不到。

10.lambda[默认1]
权重的L2正则化项。(和Ridge regression类似)。
这个参数是用来控制XGBoost的正则化部分的。虽然大部分数据科学家很少用到这个参数,但是这个参数在减少过拟合上还是可以挖掘出更多用处的。

11.alpha[默认1]
权重的L1正则化项。(和Lasso regression类似)。
可以应用在很高维度的情况下,使得算法的速度更快。

12.scale_pos_weight[默认1]
在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。

XGBoost原理

原理请详细学习此文:通俗理解kaggle比赛大杀器xgboost

以下解释来自训练营:

XGBoost底层实现了GBDT算法,并对GBDT算法做了一系列优化:

  • 对目标函数进行了泰勒展示的二阶展开,可以更加高效拟合误差。
  • 提出了一种估计分裂点的算法加速CART树的构建过程,同时可以处理稀疏数据。
  • 提出了一种树的并行策略加速迭代。
  • 为模型的分布式算法进行了底层优化。

XGBoost是基于CART树的集成模型,它的思想是采用迭代预测误差的方法串联多个决策树模型共同进行决策

举个通俗的例子,我们现在需要预测一辆车价值3000元。我们构建决策树1训练后预测为2600元,我们发现有400元的误差,那么决策树2的训练目标为400元,但决策树2的预测结果为350元,还存在50元的误差就交给第三棵树……以此类推,每一颗树用来估计之前所有树的误差,最后所有树预测结果的求和就是最终预测结果!

XGBoost的基模型是CART回归树,它有两个特点:(1)CART树,是一颗二叉树。(2)回归树,最后拟合结果是连续值。

XGBoost模型可以表示为以下形式,我们约定 f t ( x ) f_t(x) ft(x)表示前 t t t颗树的和, h t ( x ) h_t(x) ht(x)表示第 t t t颗决策树,模型定义如下:

f t ( x ) = ∑ t = 1 T h t ( x ) f_{t}(x)=\sum_{t=1}^{T} h_{t}(x) ft(x)=t=1Tht(x)

由于模型递归生成,第 t t t步的模型由第 t − 1 t-1 t1步的模型形成,可以写成:

f t ( x ) = f t − 1 ( x ) + h t ( x ) f_{t}(x)=f_{t-1}(x)+h_{t}(x) ft(x)=ft1(x)+ht(x)

每次需要加上的树 h t ( x ) h_t(x) ht(x)是之前树求和的误差:

r t , i = y i − f m − 1 ( x i ) r_{t, i}=y_{i}-f_{m-1}\left(x_{i}\right) rt,i=yifm1(xi)

我们每一步只要拟合一颗输出为 r t , i r_{t,i} rt,i的CART树加到 f t − 1 ( x ) f_{t-1}(x) ft1(x)就可以了。

思考

对数据的清洗比模型本身更重要,异常的数据直接限制了模型的评分上限。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/天景科技苑/article/detail/945630
推荐阅读
相关标签
  

闽ICP备14008679号