当前位置:   article > 正文

机器学习 | 决策树算法_机器学习决策树

机器学习决策树

一、决策树算法概述


1、树模型

        决策树:从根节点开始一步步走到叶子节点(决策)。所有的数据最终都会落到叶子节点,既可以做分类也可以做回归。

        在分类问题中,表示基于特征对实例进行分类的过程,可以认为是if-then的集合,也可以认为是定义在特征空间与类空间上的条件概率分布

2、树的组成

        根节点:第一个选择点

        非叶子节点与分支:中间过程

        叶子节点:最终的决策结果

3、

  • 决策树通常有三个步骤:特征选择、决策树的生成、决策树的修剪。
  •  决策树学习的目标
    • 根据给定的训练数据集构建一个决策树模型,使它能够对实例进行正确的分类。
  • 决策树学习的本质
    • 从训练集中归纳出一组分类规则,或者说是由训练数据集估计条件概率模型。
  • 决策树学习的损失函数:正则化的极大似然函数
  • 决策树学习的测试:最小化损失函数
  • 决策树学习的目标:在损失函数的意义下,选择最优决策树的问题。
  • 训练阶段
    • 从给定的训练集构造出来一棵树(从跟节点开始选择特征, 如何进行特征切分)。
    • 有数据想构建树。
  • 测试阶段
    • 根据构造出来的树模型从上到下去走一遍就好了。
    • 有数据想得结果。

        一旦构造好了决策树,那么分类或者预测任务就很简单了,只需要走一遍 就可以了,那么难点就在于如何构造出来一颗树,这就没那么容易了,需要考虑的问题还有很多的!

        用决策树分类:从根节点开始,对实例的某一特征进行测试,根据测试结果将实例分配到其子节点,此时每个子节点对应着该特征的一个取值,如此递归的对实例进行测试并分配,直到到达叶节点,最后将实例分到叶节点的类中。

         

        k-近邻算法可以完成很多分类任务,但是其最大的缺点是无法给出数据的内在含义,决策树的优势在于数据形式非常容易理解。 


二、熵的作用

1、如何切分特征(选择节点)

        问题:根节点的选择该用哪个特征呢?接下来呢?如何切分呢?

        想象一下:我们的目标应该是根节点就像一个老大似的能更好的切分数据 (分类的效果更好),根节点下面的节点自然就是二当家了。

        目标:通过一种衡量标准,来计算通过不同特征进行分支选择后的分类 情况,找出来最好的那个当成根节点,以此类推。

2、衡量标准-熵

        熵是表示随机变量不确定性的度量 。

        (解释:说白了就是物体内部的混乱程度,比如杂货市场里面什么都有 那肯定混乱呀,专卖店里面只卖一个牌子的那就稳定多啦)

        熵值公式

        举例

        A集合[1,1,1,1,1,1,1,1,2,2] B集合[1,2,3,4,5,6,7,8,9,1]

        显然A集合的熵值要低,因为A里面只有两种类别,相对稳定一些。而B中类别太多了,熵值就会大很多。


三、信息增益原理

1、熵值

        不确定性越大,得到的熵值也就越大。

        当p=0或p=1时,H(p)=0,随机变量完全没有不确定性。

        当p=0.5时,H(p)=1,此时随机变量的不确定性最大。

        

2、信息增益

        特征X使得类Y的不确定性减少的程度。 (分类后的专一性,希望分类后的结果是同类在一起) 

        划分数据集的大原则是:将无序数据变得更加有序,但是各种方法都有各自的优缺点,信息论是量化处理信息的分支科学,在划分数据集前后信息发生的变化称为信息增益,获得信息增益最高的特征就是最好的选择,所以必须先学习如何计算信息增益,集合信息的度量方式称为香农熵,或者简称熵。


 四、决策树构造及实例

        

        决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建。

  • 1) 开始:构建根节点,将所有训练数据都放在根节点,选择一个最优特征,按着这一特征将训练数据集分割成子集,使得各个子集有一个在当前条件下最好的分类。
  • 2) 如果这些子集已经能够被基本正确分类,那么构建叶节点,并将这些子集分到所对应的叶节点去。
  • 3)如果还有子集不能够被正确的分类,那么就对这些子集选择新的最优特征,继续对其进行分割,构建相应的节点,如果递归进行,直至所有训练数据子集被基本正确的分类,或者没有合适的特征为止。
  • 4)每个子集都被分到叶节点上,即都有了明确的类,这样就生成了一颗决策树。

决策树的特点:

  • 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。
  • 缺点:可能会产生过度匹配的问题
  • 适用数据类型:数值型和标称型

过程:

        首先,确定当前数据集上的决定性特征,为了得到该决定性特征,必须评估每个特征,完成测试之后,原始数据集就被划分为几个数据子集,这些数据子集会分布在第一个决策点的所有分支上,如果某个分支下的数据属于同一类型,则当前无序阅读的垃圾邮件已经正确的划分数据分类,无需进一步对数据集进行分割,如果不属于同一类,则要重复划分数据子集,直到所有相同类型的数据均在一个数据子集内。

创建分支的伪代码 createBranch() 如下图所示:

检测数据集中每个子项是否属于同一类:

  1. If so return 类标签:
  2. Else
  3. 寻找划分数据集的最好特征
  4. 划分数据集
  5. 创建分支节点
  6. for 每个划分的子集
  7. 调用函数createBranch()并增加返回结果到分支节点中
  8. return 分支节点

  • 数据:14天打球情况

  • 特征:4种环境变化

  • 目标:构造决策树,判断当出现一种天气的情况下,打不打球。

         

  • 划分方式:4种
  • 问题:谁当根节点呢?
  • 依据:信息增益
  • 例子:基于天气划分

         

        在历史数据中(14天)有9天打球,5天不打球,所以此时的熵应为:

        

        4个特征逐一分析,先从outlook特征开始:

        Outlook = sunny时,熵值为0.971

        Outlook = overcast时,熵值为0

        Outlook = rainy时,熵值为0.971

        加权计算

        根据数据统计,outlook取值分别为sunny,overcast,rainy的概率分别为:5/14, 4/14, 5/14

        熵值计算:5/14 * 0.971 + 4/14 * 0 + 5/14 * 0.971 = 0.693

        (gain(temperature)=0.029 gain(humidity)=0.152 gain(windy)=0.048)

        计算信息增益

        信息增益:系统的熵值从原始的0.940下降到了0.693,增益为0.247。

        同样的方式可以计算出其他特征的信息增益,那么我们选择最大的那个,相当于是遍历了一遍特征,找出来了大当家,然后再其余中继续通过信息增益找二当家!

        (找:信息增益大,熵值小)


五、信息增益率与gini系数

决策树算法

  • ID3
    • 信息增益 (有什么问题呢?)
    • 问题:ID当做特征,熵值为0,不适合解决稀疏特征,种类非常多的。
  • C4.5
    • 信息增益率/信息增益比 (解决ID3问题,考虑自身熵)
  • CART
    • 使用GINI系数来当做衡量标准
    • GINI系数
    • (和熵的衡量标准类似,计算方式不相同)
  • 连续值
    • 进行离散化。


六、决策树剪枝策略

决策树剪枝策略

  • 为什么要剪枝
  • 决策树过拟合风险很大,理论上可以完全分得开数据
  • (想象一下,如果树足够庞大,每个叶子节点不就一个数据了嘛)

预剪枝

  • 边建立决策树过程中进行剪枝的操作(更实用)。
  • 限制深度,叶子节点个数。叶子节点样本数,信息增益量等。
     

后剪枝

  • 当建立完决策树后来进行剪枝操作。 
  • 通过一定的衡量标准\large C_{a}(T)=C(T)+\alpha \left | T_{leaf} \right |
  •  \large C_{a}(T):损失
  • \large C(T):gini系数
  • \large T_{leaf}:叶子节点个数
  • (叶子节点越多,损失越大)


七、回归问题解决

        回归问题将方差作为衡量(评估)标准。看标签的平均方差。

        分类问题将熵值作为衡量标准。


部分参考于

【精选】机器学习笔记——决策树(Decision Tree)(1)_决策树节点_吃花椒的恩酱的博客-CSDN博客

【机器学习实战】3、决策树_机器学习实战决策树-CSDN博客

【精选】唐宇迪学习笔记11:决策树算法_决策树的训练和测试是_小丑呀~的博客-CSDN博客

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/寸_铁/article/detail/901494
推荐阅读
相关标签
  

闽ICP备14008679号