赞
踩
1、树模型
决策树:从根节点开始一步步走到叶子节点(决策)。所有的数据最终都会落到叶子节点,既可以做分类也可以做回归。
在分类问题中,表示基于特征对实例进行分类的过程,可以认为是if-then的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。
2、树的组成
根节点:第一个选择点
非叶子节点与分支:中间过程
叶子节点:最终的决策结果
3、
一旦构造好了决策树,那么分类或者预测任务就很简单了,只需要走一遍 就可以了,那么难点就在于如何构造出来一颗树,这就没那么容易了,需要考虑的问题还有很多的!
用决策树分类:从根节点开始,对实例的某一特征进行测试,根据测试结果将实例分配到其子节点,此时每个子节点对应着该特征的一个取值,如此递归的对实例进行测试并分配,直到到达叶节点,最后将实例分到叶节点的类中。
k-近邻算法可以完成很多分类任务,但是其最大的缺点是无法给出数据的内在含义,决策树的优势在于数据形式非常容易理解。
1、如何切分特征(选择节点)
问题:根节点的选择该用哪个特征呢?接下来呢?如何切分呢?
想象一下:我们的目标应该是根节点就像一个老大似的能更好的切分数据 (分类的效果更好),根节点下面的节点自然就是二当家了。
目标:通过一种衡量标准,来计算通过不同特征进行分支选择后的分类 情况,找出来最好的那个当成根节点,以此类推。
2、衡量标准-熵
熵是表示随机变量不确定性的度量 。
(解释:说白了就是物体内部的混乱程度,比如杂货市场里面什么都有 那肯定混乱呀,专卖店里面只卖一个牌子的那就稳定多啦)
熵值公式
举例
A集合[1,1,1,1,1,1,1,1,2,2] B集合[1,2,3,4,5,6,7,8,9,1]
显然A集合的熵值要低,因为A里面只有两种类别,相对稳定一些。而B中类别太多了,熵值就会大很多。
不确定性越大,得到的熵值也就越大。
当p=0或p=1时,H(p)=0,随机变量完全没有不确定性。
当p=0.5时,H(p)=1,此时随机变量的不确定性最大。
特征X使得类Y的不确定性减少的程度。 (分类后的专一性,希望分类后的结果是同类在一起)
划分数据集的大原则是:将无序数据变得更加有序,但是各种方法都有各自的优缺点,信息论是量化处理信息的分支科学,在划分数据集前后信息发生的变化称为信息增益,获得信息增益最高的特征就是最好的选择,所以必须先学习如何计算信息增益,集合信息的度量方式称为香农熵,或者简称熵。
决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建。
决策树的特点:
过程:
首先,确定当前数据集上的决定性特征,为了得到该决定性特征,必须评估每个特征,完成测试之后,原始数据集就被划分为几个数据子集,这些数据子集会分布在第一个决策点的所有分支上,如果某个分支下的数据属于同一类型,则当前无序阅读的垃圾邮件已经正确的划分数据分类,无需进一步对数据集进行分割,如果不属于同一类,则要重复划分数据子集,直到所有相同类型的数据均在一个数据子集内。
创建分支的伪代码 createBranch()
如下图所示:
检测数据集中每个子项是否属于同一类:
- If so return 类标签:
- Else
- 寻找划分数据集的最好特征
- 划分数据集
- 创建分支节点
- for 每个划分的子集
- 调用函数createBranch()并增加返回结果到分支节点中
- return 分支节点
在历史数据中(14天)有9天打球,5天不打球,所以此时的熵应为:
4个特征逐一分析,先从outlook特征开始:
Outlook = sunny时,熵值为0.971
Outlook = overcast时,熵值为0
Outlook = rainy时,熵值为0.971
加权计算
根据数据统计,outlook取值分别为sunny,overcast,rainy的概率分别为:5/14, 4/14, 5/14
熵值计算:5/14 * 0.971 + 4/14 * 0 + 5/14 * 0.971 = 0.693
(gain(temperature)=0.029 gain(humidity)=0.152 gain(windy)=0.048)
计算信息增益
信息增益:系统的熵值从原始的0.940下降到了0.693,增益为0.247。
同样的方式可以计算出其他特征的信息增益,那么我们选择最大的那个,相当于是遍历了一遍特征,找出来了大当家,然后再其余中继续通过信息增益找二当家!
(找:信息增益大,熵值小)
决策树算法
决策树剪枝策略
预剪枝
后剪枝
回归问题将方差作为衡量(评估)标准。看标签的平均方差。
分类问题将熵值作为衡量标准。
部分参考于
【精选】机器学习笔记——决策树(Decision Tree)(1)_决策树节点_吃花椒的恩酱的博客-CSDN博客
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。