赞
踩
CADD(Computer Aided Drug Design):计算机辅助药物设计,依据生物化学、酶学、分子生物学以及遗传学等生命科学的研究成果,针对这些基础研究中所揭示的包括酶、受体、离子通道及核酸等潜在的药物设计靶点,并参考其它类源性配体或天然产物的化学结构特征,以计算机化学为基础,通过计算机的模拟、计算和预算药物与受体生物大分子之间的相互作用,考察药物与靶点的结构互补、性质互补等,设计出合理的药物分子。它是设计和优化先导化合物的方法,CADD的应用,包括基于结构的药物设计(SBDD)、基于配体的药物设计(LBDD)、高通量虚拟筛选(HTVS)等技术,突破了传统的先导物发现模式,极大地促进了先导化合物发现和优化。特别是在食品、生物、化学、医药、植物、疾病方面应用广泛!靶点的发现与确证是现代新药研发的第一步,也是新药创制过程中的瓶颈之一。CADD的应用可以加快靶点发现的速度,提高靶点发现的准确度,从而推进新药研发。
02 AIDD(AIDrug Discovery & Design):是近年来非常火热的技术应用,且已经介入到新药设计到研发的大部分环节当中,为新药发现与开发带来了极大的助力。随着医药大数据的积累和人工智能技术的发展,运用AI技术并结合大数据的精准药物设计也不断推动着创新药物的发展。在新型冠状病毒的治疗方案中,通过一系列计算机辅助药物生物计算的方法发现一大类药物分子可以有效阻止新冠病毒的侵染,为治疗新冠提供了新思路。倾向于机器对数据库信息的自我学习,可以对数据进行提取和学习,一定程度上避免了化合物设计过程中的试错路径,同时还会带来很多全新的结构,为药物发现打破常规的结构壁垒。
03深度学习已经被广泛应用于基因组学研究中,利用已知的训练集对数据的类型和应答结果进行预测,深度学习,可以进行预测和降维分析。深度学习模型的能力更强且更灵活,在适当的训练数据下,深度学习可以在较少人工参与的情况下自动学习特征和规律。调控基因组学,变异检测,致病性评分成功应用。深度学习可以提高基因组数据的可解释性,并将基因组数据转化为可操作的临床信息。深度学习通过强大的深度神经网络模型从高维大数据中自动挖掘数据潜在特征得以实现,近两年国内外顶尖课题组MIT、Harvard University、UPenn、清华大学、复旦大学等都在从事深度学习基因组学的研究,这一研究成果更是多次发表在Nature Reviews Genetics、Nature Methods、Science Advances、Cancer Cell、Nature Biotechnology等知名国际顶刊上,为我们发表顶刊鉴定了基础。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。