赞
踩
在企业中单纯的使用LLM并不会产生太好的效果,因为它们不会对有关组织活动的特定领域专有知识进行编码,而这些知识实际上会给信息对话界面带来价值萃取。很多企业尝试通过RAG来优化这个过程,并且越来越多的人在RAG的方向上不断的研究,今天我们来讨论一下GraphRAG,这种结合知识图谱、图数据库作为大模型结合私有知识系统的最新技术,解析它是如何 释放RAG 的潜力,增强LLM回答复杂问题的准确性和相关性。
RAG 是一种自然语言查询方法,用于通过外部知识增强现有的LLM,因此如果问题需要特定知识,问题的答案会更相关。它包括一个检索信息组件,用于从外部源获取附加信息,也称为“基础上下文”,然后将其馈送到 LLM 提示以更准确地回答所需的问题。
这种方法是最便宜和最标准的方法,可以通过额外的知识来增强 LLM 以回答问题。此外,它被证明可以减少 LLM 产生幻觉的倾向,因为这一代人更坚持来自上下文的信息,而这些信息通常是可靠的。由于该方法的这种性质,RAG 成为增强生成模型输出的最流行的方法。
除了问答之外,RAG 还可以用于许多自然语言处理任务,例如从文本中提取信息、推荐、情感分析和摘要等。
但RAG在解决问题的时候,也会有表现非常差的情况:
GraphRAG是一种结合了知识图谱和大型语言模型(LLM)的技术,旨在提高问答系统的能力。微软研究人员宣布了GraphRAG,这是一种新方法,通过AI生成的知识图谱来增强AI驱动的问答系统。GraphRAG技术要求大型语言模型根据私有数据集创建知识图谱,从而改善问答过程。
GraphRAG利用图神经网络(GNN)的结果中的图嵌入来增强文本嵌入,以提高用户查询响应推理的能力。这种方法被称为软提示(Soft-prompting),是一种提示技术。此外,GraphRAG还被用于训练LLMs在不直接提供数据的情况下,通过图基数据表示进行学习,这使得模型能够访问大量的结构化知识。
要实现用于问答的 Graph RAG,您需要选择可以将哪些信息发送给 LLM。这通常是通过根据用户问题的意图查询数据库来完成的。为此目的最合适的数据库是向量数据库,它通过嵌入捕获连续向量空间中的潜在语义、句法结构和项目之间的关系。丰富的提示包含用户问题以及预先选择的附加信息,因此生成的答案会将其考虑在内。
一个简单的 Graph RAG 可以如下去简单实现:
例如 LlamaIndex 这样的 LLM 编排工具,开发者可以专注于 LLM 的编排逻辑和 pipeline 设计,而不用亲自处理很多细节的抽象与实现。
所以,用 LlamaIndex,我们可以轻松搭建 Graph RAG,甚至整合更复杂的 RAG 逻辑,比如 Graph + Vector RAG。
尽管基本实施很简单,但您需要考虑一系列挑战和注意事项,以确保结果的良好质量:
Graph RAG 是对流行的 RAG 方法的增强。 Graph RAG 包括一个图形数据库,作为发送到 LLM 的上下文信息的来源。向LLM提供从较大尺寸文档中提取的文本块可能会缺乏必要的上下文、事实正确性和语言准确性,而LLM无法深入理解收到的文本块。与向 LLM 发送纯文本文档块不同,Graph RAG 还可以向 LLM 提供结构化实体信息,将实体文本描述与其许多属性和关系相结合,从而鼓励 LLM 产生更深入的见解。借助 Graph RAG,矢量数据库中的每条记录都可以具有丰富的上下文表示,从而提高特定术语的可理解性,因此 LLM 可以更好地理解特定主题领域。Graph RAG 可以与标准 RAG 方法结合起来,以获得两全其美的效果——图表示的结构和准确性与大量文本内容相结合。
我们可以根据问题的性质、现有知识图中的领域和信息总结Graph RAG 的几种变体:
GraphRAG(Graph Retrieval-Augmented Generation)是一种结合了图数据库和检索增强生成技术的先进方法,它在多种应用场景中展现出了其独特的价值和潜力。通过结合图数据库的强大表示能力和大语言模型的理解能力,随着技术的进一步发展,GraphRAG的应用场景将会更加广泛和深入
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。