推荐系统那点事 —— 基于Spark MLlib的特征选择
在机器学习中,一般都会按照下面几个步骤:特征提取、数据预处理、特征选择、模型训练、检验优化。那么特征的选择就很关键了,一般模型最后效果的好坏往往都是跟特征的选择有关系的,因为模型本身的参数并没有太多优化的点,反而特征这边有时候多加一个或者少加一个,最终的结果都会差别很大。
在SparkMLlib中为我们提供了几种特征选择的方法,分别是VectorSlicer
、RFormula
和ChiSqSelector
。
下面就介绍下这三个方法的使用,强烈推荐有时间的把参考的文献都阅读下,会有所收获!
VectorSlicer
这个转换器可以支持用户自定义选择列,可以基于下标索引,也可以基于列名。
- 如果是下标都可以使用setIndices方法
- 如果是列名可以使用setNames方法。使用这个方法的时候,vector字段需要通过AttributeGroup设置每个向量元素的列名。
注意1:可以同时使用setInices和setName
- object VectorSlicer {
- def main(args: Array[String]) {
- val conf = new SparkConf().setAppName("VectorSlicer-Test").setMaster("local[2]")
- val sc = new SparkContext(conf)
- sc.setLogLevel("WARN")
- var sqlContext = new SQLContext(sc)
-
- val data = Array(Row(Vectors.dense(-2.0, 2.3, 0.0,1.0,2.0)))
-
- val defaultAttr = NumericAttribute.defaultAttr
- val attrs = Array("f1", "f2", "f3","f4","f5").map(defaultAttr.withName)
- val attrGroup = new AttributeGroup("userFeatures", attrs.asInstanceOf[Array[Attribute]])
-
- val dataRDD = sc.parallelize(data)
- val dataset = sqlContext.createDataFrame(dataRDD, StructType(Array(attrGroup.toStructField())))
-
- val slicer = new VectorSlicer().setInputCol("userFeatures").setOutputCol("features")
-
- slicer.setIndices(Array(0)).setNames(Array("f2"))
- val output = slicer.transform(dataset)
- println(output.select("userFeatures", "features").first())
- }
- }
注意2:如果下标和索引重复,会报重复的错:
比如:
slicer.setIndices(Array(1)).setNames(Array("f2"))
那么会遇到报错
- Exception in thread "main" java.lang.IllegalArgumentException: requirement failed: VectorSlicer requires indices and names to be disjoint sets of features, but they overlap. indices: [1]. names: [1:f2]
- at scala.Predef$.require(Predef.scala:233)
- at org.apache.spark.ml.feature.VectorSlicer.getSelectedFeatureIndices(VectorSlicer.scala:137)
- at org.apache.spark.ml.feature.VectorSlicer.transform(VectorSlicer.scala:108)
- at xingoo.mllib.VectorSlicer$.main(VectorSlicer.scala:35)
- at xingoo.mllib.VectorSlicer.main(VectorSlicer.scala)
- at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
- at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
- at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
- at java.lang.reflect.Method.invoke(Method.java:497)
- at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
注意3:如果下标不存在
slicer.setIndices(Array(6))
如果数组越界也会报错
- Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 6
- at org.apache.spark.ml.feature.VectorSlicer$$anonfun$3$$anonfun$apply$2.apply(VectorSlicer.scala:110)
- at org.apache.spark.ml.feature.VectorSlicer$$anonfun$3$$anonfun$apply$2.apply(VectorSlicer.scala:110)
- at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
- at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
- at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
- at scala.collection.mutable.ArrayOps$ofInt.foreach(ArrayOps.scala:156)
- at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
- at scala.collection.mutable.ArrayOps$ofInt.map(ArrayOps.scala:156)
- at org.apache.spark.ml.feature.VectorSlicer$$anonfun$3.apply(VectorSlicer.scala:110)
- at org.apache.spark.ml.feature.VectorSlicer$$anonfun$3.apply(VectorSlicer.scala:109)
- at scala.Option.map(Option.scala:145)
- at org.apache.spark.ml.feature.VectorSlicer.transform(VectorSlicer.scala:109)
- at xingoo.mllib.VectorSlicer$.main(VectorSlicer.scala:35)
- at xingoo.mllib.VectorSlicer.main(VectorSlicer.scala)
- at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
- at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
- at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
- at java.lang.reflect.Method.invoke(Method.java:497)
- at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
注意4:如果名称不存在也会报错
- Exception in thread "main" java.lang.IllegalArgumentException: requirement failed: getFeatureIndicesFromNames found no feature with name f8 in column StructField(userFeatures,org.apache.spark.mllib.linalg.VectorUDT@f71b0bce,false).
- at scala.Predef$.require(Predef.scala:233)
- at org.apache.spark.ml.util.MetadataUtils$$anonfun$getFeatureIndicesFromNames$2.apply(MetadataUtils.scala:89)
- at org.apache.spark.ml.util.MetadataUtils$$anonfun$getFeatureIndicesFromNames$2.apply(MetadataUtils.scala:88)
- at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
- at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
- at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
- at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
- at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
- at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:108)
- at org.apache.spark.ml.util.MetadataUtils$.getFeatureIndicesFromNames(MetadataUtils.scala:88)
- at org.apache.spark.ml.feature.VectorSlicer.getSelectedFeatureIndices(VectorSlicer.scala:129)
- at org.apache.spark.ml.feature.VectorSlicer.transform(VectorSlicer.scala:108)
- at xingoo.mllib.VectorSlicer$.main(VectorSlicer.scala:35)
- at xingoo.mllib.VectorSlicer.main(VectorSlicer.scala)
- at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
- at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
- at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
- at java.lang.reflect.Method.invoke(Method.java:497)
- at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
注意5:经过特征选择后,特征的顺序与索引和名称的顺序相同
RFormula
这个转换器可以帮助基于R模型,自动生成feature和label。比如说最常用的线性回归,在先用回归中,我们需要把一些离散化的变量变成哑变量,即转变成onehot编码,使之数值化,这个我之前的文章也介绍过,这里就不多说了。
如果不是用这个RFormula,我们可能需要经过几个步骤:
StringIndex...OneHotEncoder...
而且每个特征都要经过这样的变换,非常繁琐。有了RFormula,几乎可以一键把所有的特征问题解决。
id | coutry | hour | clicked |
---|---|---|---|
7 | US | 18 | 1.0 |
8 | CA | 12 | 0.0 |
9 | NZ | 15 | 0.0 |
然后我们只要写一个类似这样的公式clicked ~ country + hour + my_test
,就代表clicked
为label
,coutry、hour、my_test
是三个特征
比如下面的代码:
- object RFormulaTest {
- def main(args: Array[String]) {
- val conf = new SparkConf().setAppName("RFormula-Test").setMaster("local[2]")
- val sc = new SparkContext(conf)
- sc.setLogLevel("WARN")
- var sqlContext = new SQLContext(sc)
-
- val dataset = sqlContext.createDataFrame(Seq(
- (7, "US", 18, 1.0,"a"),
- (8, "CA", 12, 0.0,"b"),
- (9, "NZ", 15, 0.0,"a")
- )).toDF("id", "country", "hour", "clicked","my_test")
- val formula = new RFormula()
- .setFormula("clicked ~ country + hour + my_test")
- .setFeaturesCol("features")
- .setLabelCol("label")
- val output = formula.fit(dataset).transform(dataset)
- output.show()
- output.select("features", "label").show()
- }
- }
得到的结果
- +---+-------+----+-------+-------+------------------+-----+
- | id|country|hour|clicked|my_test| features|label|
- +---+-------+----+-------+-------+------------------+-----+
- | 7| US| 18| 1.0| a|[0.0,0.0,18.0,1.0]| 1.0|
- | 8| CA| 12| 0.0| b|[1.0,0.0,12.0,0.0]| 0.0|
- | 9| NZ| 15| 0.0| a|[0.0,1.0,15.0,1.0]| 0.0|
- +---+-------+----+-------+-------+------------------+-----+
-
- +------------------+-----+
- | features|label|
- +------------------+-----+
- |[0.0,0.0,18.0,1.0]| 1.0|
- |[1.0,0.0,12.0,0.0]| 0.0|
- |[0.0,1.0,15.0,1.0]| 0.0|
- +------------------+-----+
ChiSqSelector
这个选择器支持基于卡方检验的特征选择,卡方检验是一种计算变量独立性的检验手段。具体的可以参考维基百科,最终的结论就是卡方的值越大,就是我们越想要的特征。因此这个选择器就可以理解为,再计算卡方的值,最后按照这个值排序,选择我们想要的个数的特征。
代码也很简单
- object ChiSqSelectorTest {
- def main(args: Array[String]) {
- val conf = new SparkConf().setAppName("ChiSqSelector-Test").setMaster("local[2]")
- val sc = new SparkContext(conf)
- sc.setLogLevel("WARN")
- var sqlContext = new SQLContext(sc)
-
- val data = Seq(
- (7, Vectors.dense(0.0, 0.0, 18.0, 1.0), 1.0),
- (8, Vectors.dense(0.0, 1.0, 12.0, 0.0), 0.0),
- (9, Vectors.dense(1.0, 0.0, 15.0, 0.1), 0.0)
- )
-
- val beanRDD = sc.parallelize(data).map(t3 => Bean(t3._1,t3._2,t3._3))
- val df = sqlContext.createDataFrame(beanRDD)
-
- val selector = new ChiSqSelector()
- .setNumTopFeatures(2)
- .setFeaturesCol("features")
- .setLabelCol("clicked")
- .setOutputCol("selectedFeatures")
-
- val result = selector.fit(df).transform(df)
- result.show()
- }
-
- case class Bean(id:Double,features:org.apache.spark.mllib.linalg.Vector,clicked:Double){}
- }
这样得到的结果:
- +---+------------------+-------+----------------+
- | id| features|clicked|selectedFeatures|
- +---+------------------+-------+----------------+
- |7.0|[0.0,0.0,18.0,1.0]| 1.0| [18.0,1.0]|
- |8.0|[0.0,1.0,12.0,0.0]| 0.0| [12.0,0.0]|
- |9.0|[1.0,0.0,15.0,0.1]| 0.0| [15.0,0.1]|
- +---+------------------+-------+----------------+
总结
下面总结一下三种特征选择的使用场景:
VectorSilcer
,这个选择器适合那种有很多特征,并且明确知道自己想要哪个特征的情况。比如你有一个很全的用户画像系统,每个人有成百上千个特征,但是你指向抽取用户对电影感兴趣相关的特征,因此只要手动选择一下就可以了。RFormula
,这个选择器适合在需要做OneHotEncoder的时候,可以一个简单的代码把所有的离散特征转化成数值化表示。ChiSqSelector
,卡方检验选择器适合在你有比较多的特征,但是不知道这些特征哪个有用,哪个没用,想要通过某种方式帮助你快速筛选特征,那么这个方法很适合。
以上的总结纯属个人看法,不代表官方做法,如果有其他的见解可以留言~ 多交流!
参考
3 如何优化逻辑回归
6 卡方分布
7 皮尔逊卡方检验
8 卡方检验原理