当前位置:   article > 正文

重磅!清华ChatGLM2开源!中文榜居首,碾压GPT-4!

glm2中文

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【目标检测和Transformer】交流群

转载自:新智元 | 编辑:桃子 好困

【导读】清华ChatGLM2-6B模型又开始刷圈了!新版本在推理能力上提升了42%,最高支持32k上下文。

ChatGLM-6B自3月发布以来,在AI社区爆火,GitHub上已斩获29.8k星。

如今,第二代ChatGLM来了!

清华KEG和数据挖掘小组(THUDM)发布了中英双语对话模型ChatGLM2-6B。

64436bb6fee38ec15754fd6b4845688e.png

项目地址:https://github.com/THUDM/ChatGLM2-6B

HuggingFace:https://huggingface.co/THUDM/chatglm2-6b

最新版本ChatGLM2-6B增加了许多特性:

- 基座模型升级,性能更强大

- 支持8K-32k的上下文

- 推理性能提升了42%

- 对学术研究完全开放,允许申请商用授权

值得一提的是,在中文C-Eval榜单中,ChatGLM2以71.1分位居榜首,碾压GPT-4。而最新版本ChatGLM2-6B以51.7分位列第6。

6f3221f323bcd6d748c7afd583642c41.png

ChatGLM2-6B升级亮点


ChatGLM-6B的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,又增加许多新特性:

1. 更强大的性能

基于ChatGLM初代模型的开发经验,全面升级了ChatGLM2-6B的基座模型。

ChatGLM2-6B使用了GLM的混合目标函数,经过了1.4T中英标识符的预训练与人类偏好对齐训练.

评测结果显示,与初代模型相比,ChatGLM2-6B在MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。

2. 更长的上下文

基于 FlashAttention 技术,研究人员将基座模型的上下文长度由 ChatGLM-6B 的2K扩展到了32K,并在对话阶段使用8K的上下文长度训练,允许更多轮次的对话。

但当前版本的ChatGLM2-6B对单轮超长文档的理解能力有限,会在后续迭代升级中着重进行优化。

3. 更高效的推理

基于 Multi-Query Attention 技术,ChatGLM2-6B有更高效的推理速度和更低的显存占用.

在官方的模型实现下,推理速度相比初代提升了42%,INT4量化下,6G显存支持的对话长度由1K提升到了8K。

4. 更开放的协议

ChatGLM2-6B权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。

效果


相比于初代模型,ChatGLM2-6B在多个维度的能力上,都取得了巨大的提升。

数理逻辑

655fb974b676adc3a66e8e1f9670ec29.jpeg

24d15a959f0f709fd0d6fe8e742e98cc.jpeg

知识推理

8f58795516188c8883ee2085cffe6a0b.jpeg

f5b508c5ed6763743774d92ccf69fe4a.jpeg

长文档理解

6012a0820202ac3626f68b06fbf48784.jpeg

5f7e4d7ac0589ff78d32a9ed9915a922.jpeg

评测结果


研究团队选取了部分中英文典型数据集进行了评测,以下为ChatGLM2-6B模型在MMLU(英文)、C-Eval(中文)、GSM8K(数学)、BBH(英文) 上的测评结果。

MMLU

72f790a91267fb6b13a3dd15f4a8e2c7.png

C-Eval

1af19e61c07b1cec0ba21c8108ef5504.png

GSM8K

f24274c39a6f3ef08172f03b4547f7bf.png

BBH

18419ae583c791b323f62f73fc9a254e.png

推理性能


ChatGLM2-6B使用 Multi-Query Attention,提高了生成速度。生成2000个字符的平均速度对比如下:

e83d20aed19c3271dfdd9d17f446c847.png

Multi-Query Attention同时也降低了生成过程中KV Cache的显存占用。

此外,ChatGLM2-6B采用Causal Mask进行对话训练,连续对话时可复用前面轮次的 KV Cache,进一步优化了显存占用。

因此,使用6GB显存的显卡进行INT4量化的推理时,初代的ChatGLM-6B模型最多能够生成1119个字符就会提示显存耗尽,而ChatGLM2-6B能够生成至少8192个字符。

64c5c539619acdf14d8ed72a2664b3d2.png

研究团队也测试了量化对模型性能的影响。结果表明,量化对模型性能的影响在可接受范围内。

c9da43fc8b6547feed9624b052b63291.png

使用方法


环境安装

首先需要下载本仓库:

 
 
  1. git clone https://github.com/THUDM/ChatGLM2-6B
  2. cd ChatGLM2-6B

然后使用pip安装依赖:pip install -r requirements.txt,其中transformers库版本推荐为4.30.2,torch推荐使用 2.0 以上的版本,以获得最佳的推理性能。

代码调用

可以通过如下代码调用ChatGLM2-6B模型来生成对话:

 
 
  1. >>> from transformers import AutoTokenizer, AutoModel>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
  2. >>> model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, device='cuda')
  3. >>> model = model.eval()
  4. >>> response, history = model.chat(tokenizer, "你好", history=[])
  5. >>> print(response)
  6. 你好!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。
  7. >>> response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
  8. >>> print(response)
  9. 晚上睡不着可能会让你感到焦虑或不舒服,但以下是一些可以帮助你入睡的方法:
  10. 1. 制定规律的睡眠时间表:保持规律的睡眠时间表可以帮助你建立健康的睡眠习惯,使你更容易入睡。尽量在每天的相同时间上床,并在同一时间起床。
  11. 2. 创造一个舒适的睡眠环境:确保睡眠环境舒适,安静,黑暗且温度适宜。可以使用舒适的床上用品,并保持房间通风。
  12. 3. 放松身心:在睡前做些放松的活动,例如泡个热水澡,听些轻柔的音乐,阅读一些有趣的书籍等,有助于缓解紧张和焦虑,使你更容易入睡。
  13. 4. 避免饮用含有咖啡因的饮料:咖啡因是一种刺激性物质,会影响你的睡眠质量。尽量避免在睡前饮用含有咖啡因的饮料,例如咖啡,茶和可乐。
  14. 5. 避免在床上做与睡眠无关的事情:在床上做些与睡眠无关的事情,例如看电影,玩游戏或工作等,可能会干扰你的睡眠。
  15. 6. 尝试呼吸技巧:深呼吸是一种放松技巧,可以帮助你缓解紧张和焦虑,使你更容易入睡。试着慢慢吸气,保持几秒钟,然后缓慢呼气。
  16. 如果这些方法无法帮助你入睡,你可以考虑咨询医生或睡眠专家,寻求进一步的建议。

从本地加载模型

在从Hugging Face Hub下载模型之前,需要先安装Git LFS,然后运行:

 
 
git clone https://huggingface.co/THUDM/chatglm2-6b

如果checkpoint的下载速度较慢,可以只下载模型实现:

 
 
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/THUDM/chatglm2-6b

然后,手动下载模型参数文件,并将文件替换到本地的chatglm2-6b目录下。

地址:https://cloud.tsinghua.edu.cn/d/674208019e314311ab5c/

模型下载到本地之后,将以上代码中的THUDM/chatglm2-6b替换为本地的chatglm2-6b文件夹的路径,即可从本地加载模型。

参考资料:

https://github.com/THUDM/ChatGLM2-6B

https://huggingface.co/THUDM/chatglm2-6b

点击进入—>【目标检测和Transformer】交流群

最新CVPR 2023论文和代码下载

 
 

后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF

  1. 目标检测和Transformer交流群成立
  2. 扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
  3. 一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者ransformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
  4. ▲扫码或加微信号: CVer333,进交流群
  5. CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!
  6. ▲扫码进星球
  7. ▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看39fd25ab050a1855506c9525b82342a8.gif

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/137167?site
推荐阅读
相关标签
  

闽ICP备14008679号