赞
踩
轴突:动作电位(电位差形成电流)=神经递质发放=脉冲产生
树突或细胞体:神经递质的接受=产生内外膜电位差(电流产生)=接收脉冲
脉冲编码:多采用平均发放率,计算在一段时间内的。
泄露电流(对于与LIF中的L(leaky)):生物概念,膜电压沿轴突传递过程中的损失,在硬件电路中用电阻代替。
神经元动力学可以被设想为一个总和过程(有时也称为“集成”过程),并结合一种触发动作电位高于临界电压的机制。
一般来所,
动作电位被称为事件(忽视脉冲的形状)的神经元模型被称为IF模型。对于描述IF模型,我们需要两样东西:
1.膜电位
2.产生脉冲的机制
硬件模型:IF模型只有一个电容,没有并联的电阻,因为电阻实际等效于泄露电流,对应LIF模型。
当然我们侧重的并不是IF模型,而是 leaky integrate-and-fire模型(LIF),后者比前者更加接近真实的生物神经元,leaky表示泄露,由于细胞膜是不断进行膜内外离子的交换,所以当只有一次输入时,电压会自动发生泄漏逐渐回落到静息状态。对于LIF模型一般是认为先下降低于
其中
由右图知,由于导数存在无穷情况,会造成梯度问题。所欲不能直接使用。
左图黑色的对应上述的LIF响应,同时LIF的形状与ANNs中的激活函数relu和softplus等激活函数非常相似,relu对于LIF,加入白噪声后得到形状如soft LIF对应softplus
LIF响应公式
LIF是真实神经元的简化版,拥有部分缺陷
其中
得到
再乘R,并引进时间参数
可以得到标准式:
u为膜电位,
上式被称为被动膜方程式。
求解上式
假设t=0时,膜电位为
当没有输入,膜电压以指数衰减到静息状态,膜时间常数
注意:如果有不断的输入,膜电压会逐渐稳定
虚线为真实,一般用实线替代,
脉冲产生的门槛,首先术语“fire time”是指神经元产生一个动作电位
在LIF模型中定义为:
含义是在某个时刻产生的动作电位,使膜电位达到
根据上图实线,动作电位产生后马上将膜电位
设置
实质上LIF模型就是由两部分组成
1.leaky intergration:
2.reset:
对于神经元i,其发放的脉冲序列可以表示为:
其中
总电流
得到任意时刻的电压
第二个是由于补偿电流输入脉冲引起,第三项由于电容放电
可以改写成:
引进滤波器
前一个滤波器描述的是膜电压reset,后者是关于膜电压的线性模型。
上面我们说到LIF神经元模型,这模型是高度简化的,同时忽略了很多的有关神经动力学的内容。
1.输入(
2.每次激活后直接reset,不能保留前一脉冲。
适应性
当输入电流时,真实神经元有一个适应的过程,即从当输入一个恒定的电流
A为快速脉冲神经元(fast-spiking),其本身就没有适应性所以可以很好的对应LIF模型,许多的抑制神经元都是一些快速脉冲神经元,除了 regular-spiking 和fast-spiking还有 bursting and stuttering神经元,当有恒定输入时,会产生一系列脉冲会周期的(bursting)或不周期的(stuttering)因为长间隔而产生中断。如图B
上图,快速脉冲(fast-spiking)神经元(A)在不适应的情况下有短的间隔时间间隔,而常规的脉冲神经元(C)表现适应,可见在间隔期间增加。许多神经元在抑制电流
输入与动作电位相关
虚线为两个不同的假设不同的到来时间,虚线为对膜电位的影响情况
我们不能指望它解释神经元的完整生物化学和生物物理学。我们也不期望它解释由树枝状树上的一些“热点”中的有效电流引起的高度非线性相互作用。然而,当涉及到产生尖峰时,即时精确的事件发生时,整合和火力模型是非常准确的。因此,它可能潜在地是神经元中尖峰生成的有效模型,或者更准确地说在神经元中。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。