当前位置:   article > 正文

LIF神经元介绍

lif神经元

Integrate-And-Fire Models


基础知识

轴突:动作电位(电位差形成电流)=神经递质发放=脉冲产生
树突或细胞体:神经递质的接受=产生内外膜电位差(电流产生)=接收脉冲
脉冲编码:多采用平均发放率,计算在一段时间内的。
泄露电流(对于与LIF中的L(leaky)):生物概念,膜电压沿轴突传递过程中的损失,在硬件电路中用电阻代替。

概述

神经元动力学可以被设想为一个总和过程(有时也称为“集成”过程),并结合一种触发动作电位高于临界电压的机制。
一般来所,Vrest<Vth,当Vi(t)(对所有所输入求和后的所得到电压)上升到阈值θ时就会引起动作电位从而产生脉冲。发放的脉冲的形状是相似的,其传递的信息实质在于某时刻脉冲的有无。
动作电位被称为事件(忽视脉冲的形状)的神经元模型被称为IF模型。对于描述IF模型,我们需要两样东西:
1.膜电位Vi(t)的公式
2.产生脉冲的机制

LF模型

硬件模型:IF模型只有一个电容,没有并联的电阻,因为电阻实际等效于泄露电流,对应LIF模型。
dVdt=1CI(t)

LIF模型

当然我们侧重的并不是IF模型,而是 leaky integrate-and-fire模型(LIF),后者比前者更加接近真实的生物神经元,leaky表示泄露,由于细胞膜是不断进行膜内外离子的交换,所以当只有一次输入时,电压会自动发生泄漏逐渐回落到静息状态。对于LIF模型一般是认为先下降低于Vrest,再上升的静息电位处,而IF神经元一般是认为直接回落到静息状态处,这里涉及到一个reset电位。这里的reset可以看成输入一个短暂的电流脉冲Ir=qrfδ(tt(f))=C(ϑur)S(t),
其中qr=C(ϑur)为电容需要移除的电荷量,因为这是模电压直接由电容器的电压设定。

这里写图片描述这里写图片描述
由右图知,由于导数存在无穷情况,会造成梯度问题。所欲不能直接使用。
左图黑色的对应上述的LIF响应,同时LIF的形状与ANNs中的激活函数relu和softplus等激活函数非常相似,relu对于LIF,加入白噪声后得到形状如soft LIF对应softplus

这里写图片描述这里写图片描述
LIF响应公式
这里写图片描述
r(j)为firing rate,j为膜电压
LIF是真实神经元的简化版,拥有部分缺陷

I(t)=IR+IC

其中IR=UR/R,UR=UUrest,
IC是对电容C(C=q/uq为充电电荷,u是电压)进行充电。
IC=dq/dt=Cdu/dt

得到
I(t)=u(t)urestR+Cdudt.
再乘R,并引进时间参数τm=RC(leaky integrator才有的参数)

可以得到标准式:
τmdudt=[u(t)urest]+RI(t).
u为膜电位,τm为膜时间常数
上式被称为被动膜方程式。

求解上式
假设t=0时,膜电位为urest+Δu,当t>0时,输入电流I(t)衰减到0,可以想象当时间足够长,膜电压肯定会恢复静息状态,所以当以urest+Δu为初始条件,其解u(t)urest=Δu exp(tt0τm)for t>t0 
当没有输入,膜电压以指数衰减到静息状态,膜时间常数τm=RC表示衰减的时间,对于一个典型的神经元,它的范围是10毫秒,相对于一个峰值的持续时间1毫秒要长

注意:如果有不断的输入,膜电压会逐渐稳定u()=urest+RI0,因为电容C会充满电。

虚线为真实,一般用实线替代,$U_r$为重置电压
虚线为真实,一般用实线替代,Ur为重置电压

脉冲产生的门槛,首先术语“fire time”是指神经元产生一个动作电位t(f)的时间。
在LIF模型中定义为:
t(f):u(t(f))=ϑ.
含义是在某个时刻产生的动作电位,使膜电位达到Vthre
根据上图实线,动作电位产生后马上将膜电位
设置Vr
limδ0;δ>0u(t(f)+δ)=ur.

实质上LIF模型就是由两部分组成
1.leaky intergration:τmdudt=[u(t)urest]+RI(t).
2.reset:limδ0;δ>0u(t(f)+δ)=ur.

对于神经元i,其发放的脉冲序列可以表示为:
Si(t)=fδ(tti(f))
其中f是脉冲的标签,δ(x)是Dirac函数,所以脉冲如上图的实线所示。

总电流I(t)+Ir(t)
得到任意时刻的电压u(t)=urest+f(urϑ)exp(tt(f)τm)+Rτm0exp(sτm)I(ts)ds,
第二个是由于补偿电流输入脉冲引起,第三项由于电容放电
可以改写成:u(t)=0η(s)S(ts)ds+0κ(s)I(ts)ds.
引进滤波器η(s)=(urϑ)exp(sτm)κ(s)=1Cexp(sτm)比LIF神经元更具普遍性,因为过滤器不需要是指数函数,但是可以有任意的形状
前一个滤波器描述的是膜电压reset,后者是关于膜电压的线性模型。


LIF神经元的缺陷

上面我们说到LIF神经元模型,这模型是高度简化的,同时忽略了很多的有关神经动力学的内容。
1.输入(input),在该模型中输入是突触前神经元或注入电流的线性叠加,并独立于后突触神经元。
2.每次激活后直接reset,不能保留前一脉冲。

适应性
当输入电流时,真实神经元有一个适应的过程,即从当输入一个恒定的电流I(从0到K整个过程),根据LIF模型,我们可以推断发放率应该是恒定的,这是因为reset的存在。但在真实神经元并非这样工作,需要经过一个过程才能输出稳定的发放率。
这里写图片描述
A为快速脉冲神经元(fast-spiking),其本身就没有适应性所以可以很好的对应LIF模型,许多的抑制神经元都是一些快速脉冲神经元,除了 regular-spiking 和fast-spiking还有 bursting and stuttering神经元,当有恒定输入时,会产生一系列脉冲会周期的(bursting)或不周期的(stuttering)因为长间隔而产生中断。如图B
上图,快速脉冲(fast-spiking)神经元(A)在不适应的情况下有短的间隔时间间隔,而常规的脉冲神经元(C)表现适应,可见在间隔期间增加。许多神经元在抑制电流I1<0被终止后发出抑制反弹尖峰(D)

输入与动作电位相关
这里写图片描述
titj的时间差为绝对不应期,后面的是相对不应期
虚线为两个不同的假设不同的到来时间,虚线为对膜电位的影响情况
我们不能指望它解释神经元的完整生物化学和生物物理学。我们也不期望它解释由树枝状树上的一些“热点”中的有效电流引起的高度非线性相互作用。然而,当涉及到产生尖峰时,即时精确的事件发生时,整合和火力模型是非常准确的。因此,它可能潜在地是神经元中尖峰生成的有效模型,或者更准确地说在神经元中。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/352409
推荐阅读
相关标签
  

闽ICP备14008679号