当前位置:   article > 正文

基于Prompt的MLM文本分类_prompt learning文本分类

prompt learning文本分类

简介

常规NLP做文本分类时常用Transfer Learning的方式,在预训练bert上加一个分类层,哪个输出节点概率最大则划分到哪一类别。而基于Prompt的MLM文本分类是将文本分类任务转化为MLM( Masked Language Modeling)任务,通过[MASK]位置的输出来判断类别。
例如通过文本描述判定天气好坏,类别【好、坏】:

常规方式:今天阳光明媚! 【好】
基于Prompt的MLM: 天气[MASK],今天阳光明媚!【天气好,今天阳光明媚!】

Prompt的设定可以有多种方式设定,手写Prompt 、自动离散Prompt、自动连续 P-Tuning,自行查找论文

实验

先手写Prompt做个实验:
就以上面

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/360091
推荐阅读
相关标签