当前位置:   article > 正文

回溯算法:全排列_全排列回溯算法

全排列回溯算法

本文解决几个问题:

回溯算法是什么?解决回溯算法相关的问题有什么技巧?如何学习回溯算法?回溯算法代码是否有规律可循?

其实回溯算法其实就是我们常说的 DFS 算法,本质上就是一种暴力穷举算法。

废话不多说,直接上回溯算法框架。解决一个回溯问题,实际上就是一个决策树的遍历过程。

站在回溯树的一个节点上,你只需要思考 3 个问题:

1、路径:也就是已经做出的选择。

2、选择列表:也就是你当前可以做的选择。

3、结束条件:也就是到达决策树底层,无法再做选择的条件。

如果你不理解这三个词语的解释,没关系,我们后面会用「全排列」和「N 皇后问题」这两个经典的回溯算法问题来帮你理解这些词语是什么意思,现在你先留着印象。

代码方面,回溯算法的框架:

result = []
def backtrack(路径, 选择列表):
    if 满足结束条件:
        result.add(路径)
        return
    
    for 选择 in 选择列表:
        做选择
        backtrack(路径, 选择列表)
        撤销选择

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

其核心就是 for 循环里面的递归,在递归调用之前「做选择」,在递归调用之后「撤销选择」,特别简单。

什么叫做选择和撤销选择呢,这个框架的底层原理是什么呢?下面我们就通过「全排列」这个问题来解开之前的疑惑,详细探究一下其中的奥妙!
一、全排列问题
力扣第 46 题「 全排列」就是给你输入一个数组 nums,让你返回这些数字的全排列。

PS:我们这次讨论的全排列问题不包含重复的数字,包含重复数字的扩展场景我在后文 回溯算法秒杀排列组合子集的九种题型 中讲解。

我们在高中的时候就做过排列组合的数学题,我们也知道 n 个不重复的数,全排列共有 n! 个。那么我们当时是怎么穷举全排列的呢?

比方说给三个数 [1,2,3],你肯定不会无规律地乱穷举,一般是这样:

先固定第一位为 1,然后第二位可以是 2,那么第三位只能是 3;然后可以把第二位变成 3,第三位就只能是 2 了;然后就只能变化第一位,变成 2,然后再穷举后两位……

其实这就是回溯算法,我们高中无师自通就会用,或者有的同学直接画出如下这棵回溯树:
在这里插入图片描述
只要从根遍历这棵树,记录路径上的数字,其实就是所有的全排列。我们不妨把这棵树称为回溯算法的「决策树」。

为啥说这是决策树呢,因为你在每个节点上其实都在做决策。比如说你站在下图的红色节点上:

在这里插入图片描述
你现在就在做决策,可以选择 1 那条树枝,也可以选择 3 那条树枝。为啥只能在 1 和 3 之中选择呢?因为 2 这个树枝在你身后,这个选择你之前做过了,而全排列是不允许重复使用数字的。

现在可以解答开头的几个名词:[2] 就是「路径」,记录你已经做过的选择;[1,3] 就是「选择列表」,表示你当前可以做出的选择;「结束条件」就是遍历到树的底层叶子节点,这里也就是选择列表为空的时候。

如果明白了这几个名词,可以把「路径」和「选择」列表作为决策树上每个节点的属性,比如下图列出了几个蓝色节点的属性:
在这里插入图片描述
我们定义的 backtrack 函数其实就像一个指针,在这棵树上游走,同时要正确维护每个节点的属性,每当走到树的底层,其「路径」就是一个全排列。

再进一步,如何遍历一棵树?这个应该不难吧。回忆一下之前 学习数据结构的框架思维 写过,各种搜索问题其实都是树的遍历问题,而多叉树的遍历框架就是这样

void traverse(TreeNode root) {
    for (TreeNode child : root.childern) {
        // 前序遍历需要的操作
        traverse(child);
        // 后序遍历需要的操作
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

而所谓的前序遍历和后序遍历,他们只是两个很有用的时间点,我给你画张图你就明白了:
在这里插入图片描述
前序遍历的代码在进入某一个节点之前的那个时间点执行,后序遍历代码在离开某个节点之后的那个时间点执行。

回想我们刚才说的,「路径」和「选择」是每个节点的属性,函数在树上游走要正确维护节点的属性,那么就要在这两个特殊时间点搞点动作:
在这里插入图片描述
现在,你是否理解了回溯算法的这段核心框架?

for 选择 in 选择列表:
    # 做选择
    将该选择从选择列表移除
    路径.add(选择)
    backtrack(路径, 选择列表)
    # 撤销选择
    路径.remove(选择)
    将该选择再加入选择列表

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

我们只要在递归之前做出选择,在递归之后撤销刚才的选择,就能正确得到每个节点的选择列表和路径。

下面,直接看全排列代码:

List<List<Integer>> res = new LinkedList<>();

/* 主函数,输入一组不重复的数字,返回它们的全排列 */
List<List<Integer>> permute(int[] nums) {
    // 记录「路径」
    LinkedList<Integer> track = new LinkedList<>();
    // 「路径」中的元素会被标记为 true,避免重复使用
    boolean[] used = new boolean[nums.length];
    
    backtrack(nums, track, used);
    return res;
}

// 路径:记录在 track 中
// 选择列表:nums 中不存在于 track 的那些元素(used[i] 为 false)
// 结束条件:nums 中的元素全都在 track 中出现
void backtrack(int[] nums, LinkedList<Integer> track, boolean[] used) {
    // 触发结束条件
    if (track.size() == nums.length) {
        res.add(new LinkedList(track));
        return;
    }
    
    for (int i = 0; i < nums.length; i++) {
        // 排除不合法的选择
        if (used[i]) {
            // nums[i] 已经在 track 中,跳过
            continue;
        }
        // 做选择
        track.add(nums[i]);
        used[i] = true;
        // 进入下一层决策树
        backtrack(nums, track, used);
        // 取消选择
        track.removeLast();
        used[i] = false;
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

我们这里稍微做了些变通,没有显式记录「选择列表」,而是通过 used 数组排除已经存在 track 中的元素,从而推导出当前的选择列表:
在这里插入图片描述
至此,我们就通过全排列问题详解了回溯算法的底层原理。当然,这个算法解决全排列不是最高效的,你可能看到有的解法连 used 数组都不使用,通过交换元素达到目的。但是那种解法稍微难理解一些,这里就不写了,有兴趣可以自行搜索一下。

但是必须说明的是,不管怎么优化,都符合回溯框架,而且时间复杂度都不可能低于 O(N!),因为穷举整棵决策树是无法避免的。这也是回溯算法的一个特点,不像动态规划存在重叠子问题可以优化,回溯算法就是纯暴力穷举,复杂度一般都很高。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/474533
推荐阅读
相关标签
  

闽ICP备14008679号