当前位置:   article > 正文

【计算机视觉 | SOTA模型】整理了197个经典SOTA模型,涵盖图像分类、目标检测等方向_图片分类sota

图片分类sota

一、图像分类SOTA模型(15个)

1.模型:AlexNet
论文题目:Imagenet Classification with Deep Convolution Neural Network

2.模型:VGG
论文题目:Very Deep Convolutional Networks for Large-Scale Image Recognition

3.模型:GoogleNet
论文题目:Going Deeper with Convolutions

4.模型:ResNet
论文题目:Deep Residual Learning for Image Recognition

5.模型:ResNeXt
论文题目:Aggregated Residual Transformations for Deep Neural Networks

6.模型:DenseNet
论文题目:Densely Connected Convolutional Networks

7.模型:MobileNet
论文题目:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

8.模型:SENet
论文题目:Squeeze-and-Excitation Networks

9.模型:DPN
论文题目:Dual Path Networks

10.模型:IGC V1
论文题目:Interleaved Group Convolutions for Deep Neural Networks

11.模型:Residual Attention Network
论文题目:Residual Attention Network for Image Classification

12.模型:ShuffleNet
论文题目:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

13.模型:MnasNet
论文题目:MnasNet: Platform-Aware Neural Architecture Search for Mobile

14.模型:EfficientNet
论文题目:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

15.模型:NFNet
论文题目:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applic

二、图像生成SOTA模型(16个)

Progressive Growing of GANs for Improved Quality, Stability, and Variation
  • 1
A Style-Based Generator Architecture for Generative Adversarial Networks
  • 1
Analyzing and Improving the Image Quality of StyleGAN
  • 1
Alias-Free Generative Adversarial Networks
  • 1
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
  • 1
A Contrastive Learning Approach for Training Variational Autoencoder Priors
  • 1
StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
  • 1
Diffusion-GAN: Training GANs with Diffusion
  • 1
Improved Training of Wasserstein GANs
  • 1
Self-Attention Generative Adversarial Networks
  • 1
Large Scale GAN Training for High Fidelity Natural Image Synthesis
  • 1
CSGAN: Cyclic-Synthesized Generative Adversarial Networks for Image-to-Image Transformation
  • 1
LOGAN: Latent Optimisation for Generative Adversarial Networks
  • 1
A U-Net Based Discriminator for Generative Adversarial Networks
  • 1
Instance-Conditioned GAN
  • 1
Conditional GANs with Auxiliary Discriminative Classifier
  • 1

三、目标检测SOTA模型(16个)

Rich feature hierarchies for accurate object detection and semantic segmentation
  • 1
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
  • 1
Fast R-CNN
  • 1
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  • 1
Training Region-based Object Detectors with Online Hard Example Mining
  • 1
R-FCN: Object Detection via Region-based Fully Convolutional Networks
  • 1
Mask R-CNN
  • 1
You Only Look Once: Unified, Real-Time Object Detection
  • 1
SSD: Single Shot Multibox Detector
  • 1
Feature Pyramid Networks for Object Detection
  • 1
Focal Loss for Dense Object Detection
  • 1
Accurate Single Stage Detector Using Recurrent Rolling Convolution
  • 1
CornerNet: Detecting Objects as Paired Keypoints
  • 1
M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network
  • 1
Fully Convolutional One-Stage Object Detection
  • 1
ObjectBox: From Centers to Boxes for Anchor-Free Object Detection
  • 1
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/479894
推荐阅读
相关标签
  

闽ICP备14008679号