当前位置:   article > 正文

Hive综合实例——陌陌聊天数据分析_mm聊天 hive分析

mm聊天 hive分析

基于Hive数仓实现需求开发

-- 本地(指hive服务所在的主机)加载数据
load data local inpath '/root/hivedata/data1.tsv' into table db_msg.tb_msg_source;
load data local inpath '/root/hivedata/data2.tsv' into table db_msg.tb_msg_source;

-- 验证数据文件是否映射成功
select count(*) from db_msg.tb_msg_source;
select * from db_msg.tb_msg_source limit 10;


------------- ETL --------------

-- 测试
select msg_time, substr(msg_time, 1, 10) dayinfo, substr(msg_time, 12, 2) hourinfo,
       sender_gps, split(sender_gps, ',')[0] sender_lng, split(sender_gps, ',')[1] sender_lat
from db_msg.tb_msg_source where length(sender_gps) > 0 -- 过滤为空的非法数据
limit 3;

--如果表已存在就删除
drop table if exists db_msg.tb_msg_etl;
--将Select语句的结果保存到新表中
create table db_msg.tb_msg_etl as
    select
        *,
      substr(msg_time,0,10) as dayinfo, --获取天
      substr(msg_time,12,2) as hourinfo, --获取小时
      split(sender_gps,",")[0] as sender_lng, --提取经度
      split(sender_gps,",")[1] as sender_lat --提取纬度
    from db_msg.tb_msg_source where length(sender_gps) > 0; --过滤字段为空的数据
-- 检查数据
select * from db_msg.tb_msg_etl limit 3;


--------------- 需求指标统计分析 ----------------
--需求:统计今日总消息量
drop table if exists tb_rs_total_msg_cnt;
create table tb_rs_total_msg_cnt
comment "今日总消息量"
as
select
    dayinfo, count(*) total_msg_cnt
from tb_msg_etl
group by dayinfo;
select * from tb_rs_total_msg_cnt; -- 验证

--需求:统计今日每小时消息量、发送和接收用户数
drop table if exists tb_rs_hour_msg_cnt;
create table tb_rs_hour_msg_cnt
comment "每小时消息量趋势"
as
    select
        dayinfo,
        hourinfo,
        count(*) total_msg_cnt,
        count(distinct sender_account) sender_usr_cnt,
        count(distinct receiver_account) receiver_usr_cnt
    from tb_msg_etl
    group by dayinfo, hourinfo;
select * from tb_rs_hour_msg_cnt;

--需求:统计今日各地区发送消息数据量
drop table if exists tb_rs_loc_cnt;
create table tb_rs_loc_cnt
comment "今日各地区发送消息总量"
as
    select
        dayinfo,
        sender_gps,
        cast(sender_lng as double) longtitude,
        cast(sender_lat as double) latitude,
        count(*) total_msg_cnt
    from tb_msg_etl
    group by dayinfo,sender_gps,sender_lng,sender_lat;

select * from tb_rs_loc_cnt; --结果验证

--需求:统计今日发送消息和接收消息的用户数
create table if not exists tb_rs_usr_cnt
comment "今日发送消息人数、接受消息人数"
as
select
  dayinfo,
  count(distinct sender_account) as sender_usr_cnt,
  count(distinct receiver_account) as receiver_usr_cnt
from db_msg.tb_msg_etl
group by dayinfo;

select * from tb_rs_usr_cnt; --结果验证


--需求:统计今日发送消息最多的Top10用户
create table if not exists tb_rs_susr_top10
comment "发送消息条数最多的Top10用户"
as
select
  dayinfo,
  sender_name as username,
  count(*) as sender_msg_cnt
from db_msg.tb_msg_etl
group by dayinfo,sender_name
order by sender_msg_cnt desc
limit 10;

select * from tb_rs_susr_top10; --结果验证

--需求:统计今日接收消息最多的Top10用户
create table if not exists tb_rs_rusr_top10
comment "接受消息条数最多的Top10用户"
as
select
  dayinfo,
  receiver_name as username,
  count(*) as receiver_msg_cnt
from db_msg.tb_msg_etl
group by dayinfo,receiver_name
order by receiver_msg_cnt desc
limit 10;

select * from tb_rs_rusr_top10;  --结果验证


--需求:统计发送人的手机型号分布情况
create table if not exists tb_rs_sender_phone
comment "发送人的手机型号分布"
as
select
  dayinfo,
  sender_phonetype,
  count(distinct sender_account) as cnt
from tb_msg_etl
group by dayinfo,sender_phonetype;

select * from tb_rs_sender_phone; --结果验证


--需求:统计发送人的设备操作系统分布情况
create table if not exists tb_rs_sender_os
comment "发送人的OS分布"
as
select
  dayinfo,
  sender_os,
  count(distinct sender_account) as cnt
from tb_msg_etl
group by dayinfo,sender_os;

select * from tb_rs_sender_os;  --结果验证

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147

基于FineBI实现可视化报表

配置数据源及数据准备
  • FineBI与Hive集成的官方文档:https://help.fanruan.com/finebi/doc-view-301.html
  • 驱动配置
    • 问题:如果使用FineBI连接Hive,读取Hive的数据表,需要在FineBI中添加Hive的驱动jar包
    • 解决:将Hive的驱动jar包放入FineBI的lib(webapps\webroot\WEB-INF\lib)目录下
  • 插件安装
    • 问题:我们自己放的Hive驱动包会与FineBI自带的驱动包产生冲突,导致FineBI无法识别我们自己的驱动包
    • 解决:安装FineBI官方提供的驱动包隔离插件
  • 数据库连接
    请添加图片描述
展示

在这里插入图片描述
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/489185
推荐阅读
相关标签
  

闽ICP备14008679号