赞
踩
源码的版本是tagV5.0。
YOLOv5有s,m,l,x版本,分别代表不同的网络大小,在yaml中,分别有depth_multiple和width_multiple来控制C3模块中BottleNeck模块(会在后续介yolov5中的bottleneck)的个数(>=1)和模块的输出通道数。
# parameters nc: 80 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple # anchors anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32 # YOLOv5 backbone backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 9, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 3, C3, [1024, False]], # 9 ] # YOLOv5 head head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]
YOLOv5s(depth_multiple: 0.33 width_multiple: 0.50
)的网络结构如下:
from n params module arguments 0 -1 1 3520 Focus [3, 32, 3] 1 -1 1 18560 Conv [32, 64, 3, 2] 2 -1 1 18816 C3 [64, 64, 1] 3 -1 1 73984 Conv [64, 128, 3, 2] 4 -1 1 156928 C3 [128, 128, 3] 5 -1 1 295424 Conv [128, 256, 3, 2] 6 -1 1 625152 C3 [256, 256, 3] 7 -1 1 1180672 Conv [256, 512, 3, 2] 8 -1 1 656896 SPP [512, 512, [5, 9, 13]] 9 -1 1 1182720 C3 [512, 512, 1, False] 10 -1 1 131584 Conv [512, 256, 1, 1] 11 -1 1 0 Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 Concat [1] 13 -1 1 361984 C3 [512, 256, 1, False] 14 -1 1 33024 Conv [256, 128, 1, 1] 15 -1 1 0 Upsample [None, 2, 'nearest'] 16 [-1, 4] 1 0 Concat [1] 17 -1 1 90880 C3 [256, 128, 1, False] 18 -1 1 147712 Conv [128, 128, 3, 2] 19 [-1, 14] 1 0 Concat [1] 20 -1 1 296448 C3 [256, 256, 1, False] 21 -1 1 590336 Conv [256, 256, 3, 2] 22 [-1, 10] 1 0 Concat [1] 23 -1 1 1182720 C3 [512, 512, 1, False] 24 [17, 20, 23] 1 67425 Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
对应的结构图如下,每个模块的详细介绍会放在最后:
虽然yaml里把SPP包括在Backbone里,但是按yolov4论文中所写的,SPP属于Neck的附加模块。
__init__函数主要功能为从yaml中初始化model中各种变量包括网络模型model、通道ch,分类数nc,锚框anchor和三层输出缩放倍数stride等。
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes super(Model, self).__init__() ''' 首先去加载yaml文件 ''' if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg) as f: self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict ''' 接着判断yaml中是否有设置输入图像的通道ch,如果没有就默认为3。 接着判断分类总数nc和anchor与yaml中是否一致,如果不一致,则使用init函数参数中指定的nc和anchor。 ''' # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value if anchors: logger.info(f'Overriding model.yaml anchors with anchors={anchors}') self.yaml['anchors'] = round(anchors) # override yaml value ''' 读取yaml中的网络结构并实例化 ''' self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist self.names = [str(i) for i in range(self.yaml['nc'])] # default names # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) ''' 最后来计算图像从输入到输出的缩放倍数和anchor在head上的大小 ''' # Build strides, anchors ''' 1,获取结构最后一层Detect层 ''' m = self.model[-1] # Detect() if isinstance(m, Detect): ''' 2.定义一个256*256大小的输入 ''' s = 256 # 2x min stride ''' 3.将[1, ch, 256, 256]大小的tensor进行一次向前传播,得到3层的输出, 用输入大小256分别除以输出大小得到每一层的下采样倍数stride, 因为P3进行了3次下采样,所以P3.stride=2^3=8,同理P4.stride=16,P5.stride=32。 ''' m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward ''' 4.分别用最初的anchor大小除以stride将anchor线性缩放到对应层上 ''' m.anchors /= m.stride.view(-1, 1, 1) check_anchor_order(m) self.stride = m.stride self._initialize_biases() # only run once # print('Strides: %s' % m.stride.tolist()) # Init weights, biases initialize_weights(self) self.info() logger.info('')
parse_model函数的功能为把yaml文件中的网络结构实例化成对应的模型。
def parse_model(d, ch): # model_dict, input_channels(3) ''' 打印表头(即最开始展示的网络结构表的表头) ''' logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) ''' 获取anchors,nc,depth_multiple,width_multiple,这些参数在介绍yaml时已经介绍过 ''' anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] ''' 计算每层anchor的个数na,anchor.shape=[3,6] ''' na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors ''' yolo输出格式中的通道数 ''' no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args ''' 将对应的字符串通过eval函数执行成模块,如‘Focus’,'Conv'等 ''' m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: ''' 将对应的字符串通过eval函数执行放入args中,如‘None’,‘nc’,‘anchors’等。 ''' args[j] = eval(a) if isinstance(a, str) else a # eval strings except: pass ''' 将C3中的BottleNeck数量乘以模型缩放倍数, 如模型第一个C3的Number属性为3,乘上yolov5s.yaml中的depth_multiple(0.33),通过下行代码计算得到为1 ''' n = max(round(n * gd), 1) if n > 1 else n # depth gain ''' 将m实例化成同名模块,目前只用到Conv,SPP,Focus,C3,nn.Upsample ''' if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR]: ''' 输入通道为f指向的层的输出通道,输出通道为yaml的args中的第一个变量 ''' c1, c2 = ch[f], args[0] ''' 如果输出通道不等于255即Detect层的输出通道, 则将通道数乘上width_multiple,并调整为8的倍数。 ''' if c2 != no: # if not output ''' make_divisible代码如下: # 使得X能够被divisor整除 def make_divisible(x, divisor): return math.ceil(x / divisor) * divisor ''' c2 = make_divisible(c2 * gw, 8) ''' args初始化为[输入通道,输出通道,其他参数1,其他参数2,...]的格式 ''' args = [c1, c2, *args[1:]] ''' 如果模块时C3,则args为[输入通道,输出通道,模块个数,...] n在insert之前代表的是BottleNeck模块个数, n=1之后表示的是C3模块的个数,之后打印列表时显示C3个数为1 ''' if m in [BottleneckCSP, C3, C3TR]: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] ''' 如果是模块是concat,则输出通道是f中索引指向层数的输出通道之和 ''' elif m is Concat: c2 = sum([ch[x] for x in f]) ''' 如果模块是Detect,则把f索引指向层数的输出通道以列表的形式加入到模块参数列表中, f分别指向17, 20, 23层,查看后输出通道为128,256,512 Detect在yaml中的args=[nc,anchors],append之后为[nc,anchors,[128,256,512]] ''' elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors ''' 如果args[1]不是list而是int类型,则以该int数生成anchors的list ''' args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f] ''' 如果n>1则重复加入n个该模块,yolov5的5.0版本此处n都为1,C3的n之前为3,但也在模块实例化中被赋值为1 ''' m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module ''' 打印时显示的模块名称 ''' t = str(m)[8:-2].replace('__main__.', '') # module type ''' 打印时显示的模块参数 ''' np = sum([x.numel() for x in m_.parameters()]) # number params m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist ''' 将该层添加到网络中 ''' layers.append(m_) if i == 0: ch = [] ''' 将第i层的输出通道加入到ch列表中 ''' ch.append(c2) return nn.Sequential(*layers), sorted(save)
至此,模块实例化的工作就完成了。下面详细介绍一下各个模块。
class Detect(nn.Module): stride = None # strides computed during build export = False # onnx export def __init__(self, nc=80, anchors=(), ch=()): # detection layer super(Detect, self).__init__() ''' nc:分类数量 no:每个anchor的输出数,为(x,y,w,h,conf) + nc = 5 + nc 的总数 nl:预测层数,此次为3 na:anchors的数量,此次为3 grid:格子坐标系,左上角为(1,1),右下角为(input.w/stride,input.h/stride) ''' self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid ''' anchors.shape=[3,6],a.shape=[3,3,2] ''' a = torch.tensor(anchors).float().view(self.nl, -1, 2) ''' 将a写入缓存中,并命名为anchors 等价于self.anchors = a ''' self.register_buffer('anchors', a) # shape(nl,na,2) ''' anchor_grid.shape = [3,1,3,1,1,2] 此处是为了计算loss时使用 ''' self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) ''' 将输出通过卷积到 self.no * self.na 的通道,达到全连接的作用 ''' self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv def forward(self, x): # x = x.copy() # for profiling z = [] # inference output self.training |= self.export for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) ''' x[i].shape = [bs,3,20,20,85] ''' x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() ''' 向前传播时需要将相对坐标转换到grid绝对坐标系中 ''' if not self.training: # inference ''' 生成坐标系 grid[i].shape = [1,1,ny,nx,2] [[[[1,1],[1,2],...[1,nx]], [[2,1],[2,2],...[2,nx]], ..., [[ny,1],[ny,2],...[ny,nx]]]] ''' if self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) ''' 按损失函数的回归方式来转换坐标 ''' y = x[i].sigmoid() y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
下面具体说说最后这段代码:
y = x[i].sigmoid()
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
可以先翻看yolov3论文中对于anchor box回归的介绍:
这里的bx∈[Cx,Cx+1],by∈[Cy,Cy+1],bw∈(0,+∞),bh∈(0,+∞)
而yolov5里这段公式变成了:
使得bx∈[Cx-0.5,Cx+1.5],by∈[Cy-0.5,Cy+1.5],bw∈[0,4pw],bh∈[0,4ph]
这是因为在对anchor box回归时,用了三个grid的范围来预测,而并非1个,可以从loss.py的代码看出:
g = 0.5 # bias
off = torch.tensor([[0, 0],
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
], device=targets.device).float() * g # offsets
# Offsets
gxy = t[:, 2:4] # grid xy
gxi = gain[[2, 3]] - gxy # inverse
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
j = torch.stack((torch.ones_like(j), j, k, l, m))
t = t.repeat((5, 1, 1))[j]
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
loss.py的代码的讲解可阅读博客深度学习笔记:从YOLOv5源码loss.py详细介绍Yolov5的损失函数。这段代码的大致意思是,当标签在grid左侧半部分时,会将标签往左偏移0.5个grid,在上、下、右侧同理。具体如图所示:
grid B中的标签在右上半部分,所以标签偏移0.5个gird到E中,A,B,C,D同理,即每个网格除了回归中心点在该网格的目标,还会回归中心点在该网格附近周围网格的目标。以E左上角为坐标(Cx,Cy),所以bx∈[Cx-0.5,Cx+1.5],by∈[Cy-0.5,Cy+1.5],而bw∈[0,4pw],bh∈[0,4ph]应该是为了限制anchor的大小。
这一策略可以提高召回率(因为每个grid的预测范围变大了),但会略微降低精确度,总体提升mAP。
以下是Focus的源码:
class Focus(nn.Module):
# Focus wh information into c-space
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super(Focus, self).__init__()
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
# self.contract = Contract(gain=2)
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
# return self.conv(self.contract(x))
代码可画成如下结构:
从卷积的过程上来看如下所示:
以下是Conv及autopad的代码
def autopad(k, p=None): # kernel, padding # Pad to 'same' if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p class Conv(nn.Module): # Standard convolution def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super(Conv, self).__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) def forward(self, x): return self.act(self.bn(self.conv(x))) def fuseforward(self, x): return self.act(self.conv(x))
autopad根据卷积核大小自动计算Padding,因为c2 = (c1+2k-p)/2 + 1,所以使得C2=C1/2,代替池化层达到下采样的目的。
画成结构图如下:
其中SiLU (x)=x∗ sigmoid(x)。
C3/C3_False在源码中为C3,代码如下:
class Bottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion super(Bottleneck, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 def forward(self, x): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class C3(nn.Module): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super(C3, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) def forward(self, x): return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
C3/C3_False的区别在于Botttleneck是否使用shortcut,其结构如下图:
C3采用的是CSP结构,CSP的思想是将通道拆分成两个部分,分别走上图左右两条路,而源码中是将全部的输入特征利用两路1x1进行transition,比直接划分通道能够进一步提高特征的重用性,并且在输入到resiudal block之前也确实通道减半,减少了计算量。
SPP源码如下:
class SPP(nn.Module):
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
def __init__(self, c1, c2, k=(5, 9, 13)):
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
def forward(self, x):
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
画成网络结构图如下:
SPPNet可以增加多尺度的特征融合。
PANet整体结构如下:
具体介绍可以看文章【CV中的特征金字塔】四,CVPR 2018 PANet。YOLOv5算法将融合的方法由add变为concat。
总之,PANet是一种结构思想,源码中通过concat某两个层来实现,在v5可以看完整结构图。
YOLOv5的网络结构部分就学习到这里,损失函数部分在后面的文章介绍。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。