赞
踩
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过,同时对于书上部分章节也做了整合。
import matplotlib.pyplot as plt import torch from torch import nn from d2l import torch as d2l def vgg_block(num_convs, in_channels, out_channels): layers = [] for _ in range(num_convs): layers.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1)) layers.append(nn.ReLU()) in_channels = out_channels layers.append(nn.MaxPool2d(kernel_size=2,stride=2)) return nn.Sequential(*layers)#可变参数 #指定每个vgg块的卷积层个数和输出通道个数 conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512)) def vgg(conv_arch): conv_blks = [] in_channels = 1 # 卷积层部分 for (num_convs, out_channels) in conv_arch: conv_blks.append(vgg_block(num_convs, in_channels, out_channels)) in_channels = out_channels return nn.Sequential(*conv_blks, nn.Flatten(), # 全连接层部分 nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5), #the spatial dimensions of the input tensor after the convolutional blocks are reduced to 7x7 nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5), nn.Linear(4096, 10)) net = vgg(conv_arch) X = torch.randn(size=(1, 1, 224, 224)) for blk in net: X = blk(X) print(blk.__class__.__name__,'output shape:\t',X.shape) ratio = 4 small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]#由于VGG-11比AlexNet计算量更大,因此构建一个通道数较少的网络 net = vgg(small_conv_arch) #训练 lr, num_epochs, batch_size = 0.05, 10, 128 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224) d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()) plt.show()
训练结果:
参考文献:VGG原始论文
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。