当前位置:   article > 正文

[转]YOLOv8推理详解及部署实现_yolo8 linux环境 cpu搭建

yolo8 linux环境 cpu搭建

前言

梳理下 YOLOv8 的预处理和后处理流程,顺便让 tensorRT_Pro 支持 YOLOv8

参考:https://github.com/shouxieai/tensorRT_Pro

实现:https://github.com/Melody-Zhou/tensorRT_Pro-YOLOv8

一、YOLOv8推理(Python)

1. YOLOv8预测

我们先尝试利用官方预训练权重来推理一张图片并保存,看能否成功

在 YOLOv8 主目录下新建 predict.py 预测文件,其内容如下:

  1. import cv2
  2. from ultralytics import YOLO
  3. def hsv2bgr(h, s, v):
  4. h_i = int(h * 6)
  5. f = h * 6 - h_i
  6. p = v * (1 - s)
  7. q = v * (1 - f * s)
  8. t = v * (1 - (1 - f) * s)
  9. r, g, b = 0, 0, 0
  10. if h_i == 0:
  11. r, g, b = v, t, p
  12. elif h_i == 1:
  13. r, g, b = q, v, p
  14. elif h_i == 2:
  15. r, g, b = p, v, t
  16. elif h_i == 3:
  17. r, g, b = p, q, v
  18. elif h_i == 4:
  19. r, g, b = t, p, v
  20. elif h_i == 5:
  21. r, g, b = v, p, q
  22. return int(b * 255), int(g * 255), int(r * 255)
  23. def random_color(id):
  24. h_plane = (((id << 2) ^ 0x937151) % 100) / 100.0
  25. s_plane = (((id << 3) ^ 0x315793) % 100) / 100.0
  26. return hsv2bgr(h_plane, s_plane, 1)
  27. if __name__ == "__main__":
  28. model = YOLO("yolov8s.pt")
  29. img = cv2.imread("ultralytics/assets/bus.jpg")
  30. results = model(img)[0]
  31. names = results.names
  32. boxes = results.boxes.data.tolist()
  33. for obj in boxes:
  34. left, top, right, bottom = int(obj[0]), int(obj[1]), int(obj[2]), int(obj[3])
  35. confidence = obj[4]
  36. label = int(obj[5])
  37. color = random_color(label)
  38. cv2.rectangle(img, (left, top), (right, bottom), color=color ,thickness=2, lineType=cv2.LINE_AA)
  39. caption = f"{names[label]} {confidence:.2f}"
  40. w, h = cv2.getTextSize(caption, 0, 1, 2)[0]
  41. cv2.rectangle(img, (left - 3, top - 33), (left + w + 10, top), color, -1)
  42. cv2.putText(img, caption, (left, top - 5), 0, 1, (0, 0, 0), 2, 16)
  43. cv2.imwrite("predict.jpg", img)
  44. print("save done")

在上述代码中我们通过 opencv 读取了一张图像,并送入模型中推理得到输出 results,results 中保存着不同任务的结果,我们这里是检测任务,因此只需要拿到对应的 boxes 即可。

拿到 boxes 后我们就可以将对应的框和模型预测的类别以及置信度绘制在图像上并保存。

关于可视化的代码实现参考自 tensorRT_Pro 中的实现,可以参考:app_yolo.cpp#L95

关于随机颜色的代码实现参考自 tensorRT_Pro 中的实现,可以参考:ilogger.cpp#L90

模型推理保存的结果图像如下所示:

在这里插入图片描述

2. YOLOv8预处理

模型预测成功后我们就需要自己动手来写下 YOLOv8 的预处理和后处理,方便后续在 C++ 上的实现,我们先来看看预处理的实现。

经过我们的调试分析可知 YOLOv8 的预处理过程在 ultralytics/engine/predictor.py 文件中,可以参考:predictor.py#L111

代码如下:

  1. def preprocess(self, im):
  2. """
  3. Prepares input image before inference.
  4. Args:
  5. im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list.
  6. """
  7. not_tensor = not isinstance(im, torch.Tensor)
  8. if not_tensor:
  9. im = np.stack(self.pre_transform(im))
  10. im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
  11. im = np.ascontiguousarray(im) # contiguous
  12. im = torch.from_numpy(im)
  13. im = im.to(self.device)
  14. im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32
  15. if not_tensor:
  16. im /= 255 # 0 - 255 to 0.0 - 1.0
  17. return im

它包含以下步骤:

  • self.pre_transform:即 letterbox 添加灰条
  • im[…,::-1]:BGR → RGB
  • transpose((0, 3, 1, 2)):添加 batch 维度,HWC → CHW
  • torch.from_numpy:to Tensor
  • im /= 255:除以 255,归一化

大家如果对 YOLOv5 的预处理熟悉的话,会发现 YOLOv8 的预处理和 YOLOv5 的预处理一模一样,因此我们不难写出对应的预处理代码,如下所示:

  1. def preprocess_warpAffine(image, dst_width=640, dst_height=640):
  2. scale = min((dst_width / image.shape[1], dst_height / image.shape[0]))
  3. ox = (dst_width - scale * image.shape[1]) / 2
  4. oy = (dst_height - scale * image.shape[0]) / 2
  5. M = np.array([
  6. [scale, 0, ox],
  7. [0, scale, oy]
  8. ], dtype=np.float32)
  9. img_pre = cv2.warpAffine(image, M, (dst_width, dst_height), flags=cv2.INTER_LINEAR,
  10. borderMode=cv2.BORDER_CONSTANT, borderValue=(114, 114, 114))
  11. IM = cv2.invertAffineTransform(M)
  12. img_pre = (img_pre[...,::-1] / 255.0).astype(np.float32)
  13. img_pre = img_pre.transpose(2, 0, 1)[None]
  14. img_pre = torch.from_numpy(img_pre)
  15. return img_pre, IM

其中的 letterbox 添加灰条步骤我们可以通过仿射变换 warpAffine 实现,warpAffine 非常适合在 CUDA 上加速,关于 warpAffine 仿射变换的细节大家可以参考 YOLOv5推理详解及预处理高性能实现,这边不再赘述。其它步骤倒是和官方的没有区别。

值得注意的是,letterbox 的操作是先将长边缩放到 640,再将短边按比例缩放,同时确保缩放后的短边能整除 32,如果不能则向上取整多余部分填充。warpAffine 的操作则是将图像分辨率固定在 640x640,多余部分添加灰条,博主对一张 1080x810 分辨率的图像经过两种不同预处理后的结果进行了对比,如下图所示:

在这里插入图片描述

图1-1 LeeterBox预处理图像

在这里插入图片描述

图1-2 warpAffine预处理图像

可以看到二者明显的差别,letterbox 中没有灰条,因为长边缩放到 640 后短边刚好缩放到 480,能整除 32。而 warpAffine 则是固定分辨率 640x640,因此短边多余部分将用灰条填充。

warpAffine 预处理方法将图像分辨率固定在 640x640,主要有以下几点考虑:(from chatGPT)

  • 简化处理逻辑:所有预处理后的图像分辨率相同,可以简化 CUDA 中并行处理的逻辑,使得代码更易于编写和维护。
  • 优化内存访问:在 GPU 上,连续的内存访问模式通常比非连续的访问更高效。如果所有图像具有相同的大小和布局,这可以帮助优化内存访问,提高处理速度。
  • 避免动态内存分配:动态内存分配和释放是昂贵的操作,特别是在 GPU 上。固定分辨率意味着可以预先分配足够的内存,而不需要根据每个图像的大小动态调整内存大小。

这两种不同的预处理方法生成的图片输入到神经网络时的维度不同,letterbox 的输入是 torch.Size([1, 3, 640, 480]),warpAffine 的输入是 torch.Size([1, 3, 640, 640])。由于输入维度不同将导致模型输出维度的差异,leetrbox 的输出是 torch.Size([1, 84, 6300]) 只有 6300 个框,而 warpAffine 的输出是 torch.Size([1, 84, 8400]) 有 8400 个框,这点大家需要清楚。

3. YOLOv8后处理

我们再来看看后处理的实现

经过我们的调试分析可知 YOLOv8 的后处理过程在 ultralytics/models/yolo/detect/predict.py 文件中,可以参考:detect/predict.py#L23

  1. class DetectionPredictor(BasePredictor):
  2. """
  3. A class extending the BasePredictor class for prediction based on a detection model.
  4. Example:
  5. ```python
  6. from ultralytics.utils import ASSETS
  7. from ultralytics.models.yolo.detect import DetectionPredictor
  8. args = dict(model='yolov8n.pt', source=ASSETS)
  9. predictor = DetectionPredictor(overrides=args)
  10. predictor.predict_cli()
  11. """
  12. def postprocess(self, preds, img, orig_imgs):
  13. """Post-processes predictions and returns a list of Results objects."""
  14. preds = ops.non_max_suppression(preds,
  15. self.args.conf,
  16. self.args.iou,
  17. agnostic=self.args.agnostic_nms,
  18. max_det=self.args.max_det,
  19. classes=self.args.classes)
  20. if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
  21. orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
  22. results = []
  23. for i, pred in enumerate(preds):
  24. orig_img = orig_imgs[i]
  25. pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
  26. img_path = self.batch[0][i]
  27. results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
  28. return results

它包含以下步骤:

  • ops.non_max_suppression:非极大值抑制,即 NMS
  • ops.scale_boxes:框的解码,即 decode boxes

大家如果对 YOLOv5 的后处理熟悉的话,会发现 YOLOv8 的后处理和 YOLOv5 的后处理基本相似,为什么说基本相似呢,是因为 YOLOv8 是基于 anchor-free 的,在框的解码上有略微差异,因此我们不难写出对应的后处理代码,如下所示:

  1. def iou(box1, box2):
  2. def area_box(box):
  3. return (box[2] - box[0]) * (box[3] - box[1])
  4. left, top = max(box1[:2], box2[:2])
  5. right, bottom = min(box1[2:4], box2[2:4])
  6. union = max((right - left), 0) * max((bottom - top), 0)
  7. cross = area_box(box1) + area_box(box2) - union
  8. if cross == 0 or union == 0:
  9. return 0
  10. return union / cross
  11. def NMS(boxes, iou_thres):
  12. remove_flags = [False] * len(boxes)
  13. keep_boxes = []
  14. for i, ibox in enumerate(boxes):
  15. if remove_flags[i]:
  16. continue
  17. keep_boxes.append(ibox)
  18. for j in range(i + 1, len(boxes)):
  19. if remove_flags[j]:
  20. continue
  21. jbox = boxes[j]
  22. if(ibox[5] != jbox[5]):
  23. continue
  24. if iou(ibox, jbox) > iou_thres:
  25. remove_flags[j] = True
  26. return keep_boxes
  27. def postprocess(pred, IM=[], conf_thres=0.25, iou_thres=0.45):
  28. # 输入是模型推理的结果,即8400个预测框
  29. # 1,8400,84 [cx,cy,w,h,class*80]
  30. boxes = []
  31. for item in pred[0]:
  32. cx, cy, w, h = item[:4]
  33. label = item[4:].argmax()
  34. confidence = item[4 + label]
  35. if confidence < conf_thres:
  36. continue
  37. left = cx - w * 0.5
  38. top = cy - h * 0.5
  39. right = cx + w * 0.5
  40. bottom = cy + h * 0.5
  41. boxes.append([left, top, right, bottom, confidence, label])
  42. boxes = np.array(boxes)
  43. lr = boxes[:,[0, 2]]
  44. tb = boxes[:,[1, 3]]
  45. boxes[:,[0,2]] = IM[0][0] * lr + IM[0][2]
  46. boxes[:,[1,3]] = IM[1][1] * tb + IM[1][2]
  47. boxes = sorted(boxes.tolist(), key=lambda x:x[4], reverse=True)
  48. return NMS(boxes, iou_thres)

其中预测框的解码我们是通过仿射变换逆矩阵 IM 实现的,关于 IM 的细节大家可以参考 YOLOv5推理详解及预处理高性能实现,这边不再赘述。关于 NMS 的代码参考自 tensorRT_Pro 中的实现:yolo.cpp#L119

对于一张 640x640 的图片来说,YOLOv8 预测框的总数量是 8400,每个预测框的维度是 84(针对 COCO 数据集的 80 个类别而言)
8400 × 84 = 80 × 80 × 84 + 40 × 40 × 84 + 20 × 20 × 84 = 80 × 80 × ( 4 + 80 ) + 40 × 40 × ( 4 + 80 ) + 20 × 20 × ( 4 + 80 )

8400×84=80×80×84+40×40×84+20×20×84=80×80×(4+80)+40×40×(4+80)+20×20×(4+80) 8400×84=80×80×84+40×40×84+20×20×84=80×80×(4+80)+40×40×(4+80)+20×20×(4+80)
其中的 4 对应的是 cx, cy, w, h,分别代表的含义是边界框中心点坐标、宽高;80 对应的是 COCO 数据集中的 80 个类别置信度。

4. YOLOv8推理

通过上面对 YOLOv8 的预处理和后处理分析之后,整个推理过程就显而易见了。YOLOv8 的推理包括图像预处理、模型推理、预测结果后处理三部分,其中预处理主要包括 warpAffine 仿射变换,后处理主要包括 decode 解码和 NMS 两部分。

完整的推理代码如下:

  1. import cv2
  2. import torch
  3. import numpy as np
  4. from ultralytics.data.augment import LetterBox
  5. from ultralytics.nn.autobackend import AutoBackend
  6. def preprocess_letterbox(image):
  7. letterbox = LetterBox(new_shape=640, stride=32, auto=True)
  8. image = letterbox(image=image)
  9. image = (image[..., ::-1] / 255.0).astype(np.float32) # BGR to RGB, 0 - 255 to 0.0 - 1.0
  10. image = image.transpose(2, 0, 1)[None] # BHWC to BCHW (n, 3, h, w)
  11. image = torch.from_numpy(image)
  12. return image
  13. def preprocess_warpAffine(image, dst_width=640, dst_height=640):
  14. scale = min((dst_width / image.shape[1], dst_height / image.shape[0]))
  15. ox = (dst_width - scale * image.shape[1]) / 2
  16. oy = (dst_height - scale * image.shape[0]) / 2
  17. M = np.array([
  18. [scale, 0, ox],
  19. [0, scale, oy]
  20. ], dtype=np.float32)
  21. img_pre = cv2.warpAffine(image, M, (dst_width, dst_height), flags=cv2.INTER_LINEAR,
  22. borderMode=cv2.BORDER_CONSTANT, borderValue=(114, 114, 114))
  23. IM = cv2.invertAffineTransform(M)
  24. img_pre = (img_pre[...,::-1] / 255.0).astype(np.float32)
  25. img_pre = img_pre.transpose(2, 0, 1)[None]
  26. img_pre = torch.from_numpy(img_pre)
  27. return img_pre, IM
  28. def iou(box1, box2):
  29. def area_box(box):
  30. return (box[2] - box[0]) * (box[3] - box[1])
  31. left, top = max(box1[:2], box2[:2])
  32. right, bottom = min(box1[2:4], box2[2:4])
  33. union = max((right - left), 0) * max((bottom - top), 0)
  34. cross = area_box(box1) + area_box(box2) - union
  35. if cross == 0 or union == 0:
  36. return 0
  37. return union / cross
  38. def NMS(boxes, iou_thres):
  39. remove_flags = [False] * len(boxes)
  40. keep_boxes = []
  41. for i, ibox in enumerate(boxes):
  42. if remove_flags[i]:
  43. continue
  44. keep_boxes.append(ibox)
  45. for j in range(i + 1, len(boxes)):
  46. if remove_flags[j]:
  47. continue
  48. jbox = boxes[j]
  49. if(ibox[5] != jbox[5]):
  50. continue
  51. if iou(ibox, jbox) > iou_thres:
  52. remove_flags[j] = True
  53. return keep_boxes
  54. def postprocess(pred, IM=[], conf_thres=0.25, iou_thres=0.45):
  55. # 输入是模型推理的结果,即8400个预测框
  56. # 1,8400,84 [cx,cy,w,h,class*80]
  57. boxes = []
  58. for item in pred[0]:
  59. cx, cy, w, h = item[:4]
  60. label = item[4:].argmax()
  61. confidence = item[4 + label]
  62. if confidence < conf_thres:
  63. continue
  64. left = cx - w * 0.5
  65. top = cy - h * 0.5
  66. right = cx + w * 0.5
  67. bottom = cy + h * 0.5
  68. boxes.append([left, top, right, bottom, confidence, label])
  69. boxes = np.array(boxes)
  70. lr = boxes[:,[0, 2]]
  71. tb = boxes[:,[1, 3]]
  72. boxes[:,[0,2]] = IM[0][0] * lr + IM[0][2]
  73. boxes[:,[1,3]] = IM[1][1] * tb + IM[1][2]
  74. boxes = sorted(boxes.tolist(), key=lambda x:x[4], reverse=True)
  75. return NMS(boxes, iou_thres)
  76. def hsv2bgr(h, s, v):
  77. h_i = int(h * 6)
  78. f = h * 6 - h_i
  79. p = v * (1 - s)
  80. q = v * (1 - f * s)
  81. t = v * (1 - (1 - f) * s)
  82. r, g, b = 0, 0, 0
  83. if h_i == 0:
  84. r, g, b = v, t, p
  85. elif h_i == 1:
  86. r, g, b = q, v, p
  87. elif h_i == 2:
  88. r, g, b = p, v, t
  89. elif h_i == 3:
  90. r, g, b = p, q, v
  91. elif h_i == 4:
  92. r, g, b = t, p, v
  93. elif h_i == 5:
  94. r, g, b = v, p, q
  95. return int(b * 255), int(g * 255), int(r * 255)
  96. def random_color(id):
  97. h_plane = (((id << 2) ^ 0x937151) % 100) / 100.0
  98. s_plane = (((id << 3) ^ 0x315793) % 100) / 100.0
  99. return hsv2bgr(h_plane, s_plane, 1)
  100. if __name__ == "__main__":
  101. img = cv2.imread("ultralytics/assets/bus.jpg")
  102. # img_pre = preprocess_letterbox(img)
  103. img_pre, IM = preprocess_warpAffine(img)
  104. model = AutoBackend(weights="yolov8s.pt")
  105. names = model.names
  106. result = model(img_pre)[0].transpose(-1, -2) # 1,8400,84
  107. boxes = postprocess(result, IM)
  108. for obj in boxes:
  109. left, top, right, bottom = int(obj[0]), int(obj[1]), int(obj[2]), int(obj[3])
  110. confidence = obj[4]
  111. label = int(obj[5])
  112. color = random_color(label)
  113. cv2.rectangle(img, (left, top), (right, bottom), color=color ,thickness=2, lineType=cv2.LINE_AA)
  114. caption = f"{names[label]} {confidence:.2f}"
  115. w, h = cv2.getTextSize(caption, 0, 1, 2)[0]
  116. cv2.rectangle(img, (left - 3, top - 33), (left + w + 10, top), color, -1)
  117. cv2.putText(img, caption, (left, top - 5), 0, 1, (0, 0, 0), 2, 16)
  118. cv2.imwrite("infer.jpg", img)
  119. print("save done")

推理效果如下图:

在这里插入图片描述

至此,我们在 Python 上面完成了 YOLOv8 的整个推理过程,下面我们去 C++ 上实现。

二、YOLOv8推理(C++)

C++ 上的实现我们使用的 repo 依旧是 tensorRT_Pro,现在我们就基于 tensorRT_Pro 完成 YOLOv8 在 C++ 上的推理。

1. ONNX导出

首先我们需要将 YOLOv8 模型导出为 ONNX,为了适配 tensorRT_Pro 我们需要做一些修改,主要有以下几点:

  • 修改输出节点名为 output,输入输出只让 batch 维度动态,宽高不动态
  • 增加 transpose 节点交换输出的 2、3 维度

具体修改如下:

1. 在 ultralytics/engine/exporter.py 文件中改动一处

  • 323 行:输出节点名修改为 output
  • 326 行:输入只让 batch 维度动态,宽高不动态
  • 331 行:输出只让 batch 维度动态,宽高不动态

  1. # ========== exporter.py ==========
  2. # ultralytics/engine/exporter.py第323
  3. # output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
  4. # dynamic = self.args.dynamic
  5. # if dynamic:
  6. # dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
  7. # if isinstance(self.model, SegmentationModel):
  8. # dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
  9. # dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
  10. # elif isinstance(self.model, DetectionModel):
  11. # dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
  12. # 修改为:
  13. output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output']
  14. dynamic = self.args.dynamic
  15. if dynamic:
  16. dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
  17. if isinstance(self.model, SegmentationModel):
  18. dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
  19. dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
  20. elif isinstance(self.model, DetectionModel):
  21. dynamic['output'] = {0: 'batch'} # shape(1, 84, 8400)

2. 在 ultralytics/nn/modules/head.py 文件中改动一处

  • 72 行:添加 transpose 节点交换输出的第 2 和第 3 维度

  1. # ========== head.py ==========
  2. # ultralytics/nn/modules/head.py第72行,forward函数
  3. # return y if self.export else (y, x)
  4. # 修改为:
  5. return y.permute(0, 2, 1) if self.export else (y, x)

以上就是为了适配 tensorRT_Pro 而做出的代码修改,修改好以后,将预训练权重 yolov8s.pt 放在 ultralytics-main 主目录下,新建导出文件 export.py,内容如下:

  1. from ultralytics import YOLO
  2. model = YOLO("yolov8s.pt")
  3. success = model.export(format="onnx", dynamic=True, simplify=True)

在终端执行如下指令即可完成 onnx 导出:

python export.py

导出过程如下图所示:

在这里插入图片描述

可以看到导出的 pytorch 模型的输入 shape 是 1x3x640x640,输出 shape 是 1x8400x84,符合我们的预期。

导出成功后会在当前目录下生成 yolov8s.onnx 模型,我们可以使用 Netron 可视化工具查看,如下图所示:

在这里插入图片描述

可以看到输入节点名是 images,维度是 batchx3x640x640,保证只有 batch 维度动态,输出节点名是 output,维度是 batchxTransposeoutput_dim_1xTransposeoutput_dim_2,保证只有 batch 维度动态,符合 tensorRT_Pro 的格式。

大家不要看到 Transposeoutput_dim_1 和 Transposeoutput_dim_2 就认为这也是动态的,其实输出节点的维度是根据输入节点的维度和模型的结构生成的,而额外的维度 Transposeoutput_dim_1 和 Transposeoutput_dim_2 可能是由模型结构中某些操作决定的,如通道数变换(Transpose)操作的输出维度,而不是由动态维度决定的。因此,通常情况下,这些维度是静态的,不会在推理时改变。

2. YOLOv8预处理

之前有提到过 YOLOv8 预处理部分和 YOLOv5 实现一模一样,因此我们在 tensorRT_Pro 中 YOLOv8 模型的预处理可以直接使用 YOLOv5 的预处理。

tensorRT_Pro 中预处理的代码如下:

  1. __global__ void warp_affine_bilinear_and_normalize_plane_kernel(uint8_t* src, int src_line_size, int src_width, int src_height, float* dst, int dst_width, int dst_height,
  2. uint8_t const_value_st, float* warp_affine_matrix_2_3, Norm norm, int edge){
  3. int position = blockDim.x * blockIdx.x + threadIdx.x;
  4. if (position >= edge) return;
  5. float m_x1 = warp_affine_matrix_2_3[0];
  6. float m_y1 = warp_affine_matrix_2_3[1];
  7. float m_z1 = warp_affine_matrix_2_3[2];
  8. float m_x2 = warp_affine_matrix_2_3[3];
  9. float m_y2 = warp_affine_matrix_2_3[4];
  10. float m_z2 = warp_affine_matrix_2_3[5];
  11. int dx = position % dst_width;
  12. int dy = position / dst_width;
  13. float src_x = m_x1 * dx + m_y1 * dy + m_z1;
  14. float src_y = m_x2 * dx + m_y2 * dy + m_z2;
  15. float c0, c1, c2;
  16. if(src_x <= -1 || src_x >= src_width || src_y <= -1 || src_y >= src_height){
  17. // out of range
  18. c0 = const_value_st;
  19. c1 = const_value_st;
  20. c2 = const_value_st;
  21. }else{
  22. int y_low = floorf(src_y);
  23. int x_low = floorf(src_x);
  24. int y_high = y_low + 1;
  25. int x_high = x_low + 1;
  26. uint8_t const_value[] = {const_value_st, const_value_st, const_value_st};
  27. float ly = src_y - y_low;
  28. float lx = src_x - x_low;
  29. float hy = 1 - ly;
  30. float hx = 1 - lx;
  31. float w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
  32. uint8_t* v1 = const_value;
  33. uint8_t* v2 = const_value;
  34. uint8_t* v3 = const_value;
  35. uint8_t* v4 = const_value;
  36. if(y_low >= 0){
  37. if (x_low >= 0)
  38. v1 = src + y_low * src_line_size + x_low * 3;
  39. if (x_high < src_width)
  40. v2 = src + y_low * src_line_size + x_high * 3;
  41. }
  42. if(y_high < src_height){
  43. if (x_low >= 0)
  44. v3 = src + y_high * src_line_size + x_low * 3;
  45. if (x_high < src_width)
  46. v4 = src + y_high * src_line_size + x_high * 3;
  47. }
  48. // same to opencv
  49. c0 = floorf(w1 * v1[0] + w2 * v2[0] + w3 * v3[0] + w4 * v4[0] + 0.5f);
  50. c1 = floorf(w1 * v1[1] + w2 * v2[1] + w3 * v3[1] + w4 * v4[1] + 0.5f);
  51. c2 = floorf(w1 * v1[2] + w2 * v2[2] + w3 * v3[2] + w4 * v4[2] + 0.5f);
  52. }
  53. if(norm.channel_type == ChannelType::Invert){
  54. float t = c2;
  55. c2 = c0; c0 = t;
  56. }
  57. if(norm.type == NormType::MeanStd){
  58. c0 = (c0 * norm.alpha - norm.mean[0]) / norm.std[0];
  59. c1 = (c1 * norm.alpha - norm.mean[1]) / norm.std[1];
  60. c2 = (c2 * norm.alpha - norm.mean[2]) / norm.std[2];
  61. }else if(norm.type == NormType::AlphaBeta){
  62. c0 = c0 * norm.alpha + norm.beta;
  63. c1 = c1 * norm.alpha + norm.beta;
  64. c2 = c2 * norm.alpha + norm.beta;
  65. }
  66. int area = dst_width * dst_height;
  67. float* pdst_c0 = dst + dy * dst_width + dx;
  68. float* pdst_c1 = pdst_c0 + area;
  69. float* pdst_c2 = pdst_c1 + area;
  70. *pdst_c0 = c0;
  71. *pdst_c1 = c1;
  72. *pdst_c2 = c2;
  73. }

关于预处理部分其实就是调用了上述 CUDA 核函数来实现 warpAffine,由于在 CUDA 中我们是对每个像素进行操作,因此非常容易实现 BGR → RGB,/255.0 等操作。关于代码的具体分析可以参考 YOLOv5推理详解及预处理高性能实现,这边不再赘述。

3. YOLOv8后处理

之前有提到过 YOLOv8 后处理部分和 YOLOv5 基本相似,但由于 YOLOv8 是基于 anchor-free 的,因此对于 decode 解码部分我们需要进行简单调整,代码可参考:yolo.cu#L129

因此我们不难写出 YOLOv8 的 decode 解码部分的实现代码,如下所示:

  1. static __global__ void decode_kernel_v8(float *predict, int num_bboxes, int num_classes, float confidence_threshold, float* invert_affine_matrix, float* parray, int MAX_IMAGE_BOXES){
  2. int position = blockDim.x * blockIdx.x + threadIdx.x;
  3. if (position >= num_bboxes) return;
  4. float* pitem = predict + (4 + num_classes) * position;
  5. float* class_confidence = pitem + 4;
  6. float confidence = *class_confidence++;
  7. int label = 0;
  8. for(int i = 1; i < num_classes; ++i, ++class_confidence){
  9. if(*class_confidence > confidence){
  10. confidence = *class_confidence;
  11. label = i;
  12. }
  13. }
  14. if(confidence < confidence_threshold)
  15. return;
  16. int index = atomicAdd(parray, 1);
  17. if(index >= MAX_IMAGE_BOXES)
  18. return;
  19. float cx = *pitem++;
  20. float cy = *pitem++;
  21. float width = *pitem++;
  22. float height = *pitem++;
  23. float left = cx - width * 0.5f;
  24. float top = cy - height * 0.5f;
  25. float right = cx + width * 0.5f;
  26. float bottom = cy + height * 0.5f;
  27. affine_project(invert_affine_matrix, left, top, &left, &top);
  28. affine_project(invert_affine_matrix, right, bottom, &right, &bottom);
  29. float *pout_item = parray + 1 + index * NUM_BOX_ELEMENT;
  30. *pout_item++ = left;
  31. *pout_item++ = top;
  32. *pout_item++ = right;
  33. *pout_item++ = bottom;
  34. *pout_item++ = confidence;
  35. *pout_item++ = label;
  36. *pout_item++ = 1; // 1 = keep, 0 = ignore
  37. }

关于 decode 的具体实现其实就是启动多个线程,每个线程处理一个框的解码,我们会通过仿射变换逆矩阵 IM 将坐标映射回原图上,关于 decode 代码的详细分析可参考 infer源码阅读之yolo.cu,这边不再赘述,另外关于 NMS 部分的实现无需修改,其具体实现可以参考:yolo_decode.cu#L81

4. YOLOv8推理

通过上面对 YOLOv8 的预处理和后处理分析之后,整个推理过程就显而易见了。C++ 上 YOLOv8 的预处理部分可直接沿用 YOLOv5 的预处理,后处理中的 decode 解码部分需要简单修改,NMS 部分无需修改。

我们在终端执行如下指令即可完成推理(注意!完整流程博主会在后续内容介绍,这边只是简单演示

make yolo

编译图解如下所示:

在这里插入图片描述

推理结果如下图所示:

在这里插入图片描述

至此,我们在 C++ 上面完成了 YOLOv8 的整个推理过程,下面我们将完整的走一遍流程。

三、YOLOv8部署

博主新建了一个仓库 tensorRT_Pro-YOLOv8,该仓库基于 shouxieai/tensorRT_Pro,并进行了调整以支持 YOLOv8 的各项任务,目前已支持分类、检测、分割、姿态点估计任务。

下面我们就来具体看看如何利用 tensorRT_Pro-YOLOv8 这个 repo 完成 YOLOv8 的推理。

1. 源码下载

tensorRT_Pro-YOLOv8 的代码可以直接从 GitHub 官网上下载,源码下载地址是 https://github.com/Melody-Zhou/tensorRT_Pro-YOLOv8,Linux 下代码克隆指令如下:

git clone https://github.com/Melody-Zhou/tensorRT_Pro-YOLOv8.git

也可手动点击下载,点击右上角的 Code 按键,将代码下载下来。至此整个项目就已经准备好了。也可以点击 here 下载博主准备好的源代码(注意代码下载于 2023/11/7 日,若有改动请参考最新

2. 环境配置

需要使用的软件环境有 TensorRT、CUDA、cuDNN、OpenCV、Protobuf,所有软件环境的安装可以参考 Ubuntu20.04软件安装大全,这里不再赘述,需要各位看官自行配置好相关环境

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/162307
推荐阅读
相关标签