当前位置:   article > 正文

ChatGPT/GPT4科研实践篇: AI绘图+论文写作+编程

最新chatgpt/gpt4科研实践应用与ai绘图技术及论文高效写作

05a6d59bf5ca793fdfbe37dade65da4d.png

ChatGPT强大功能展示!

e4f737feed31af8355c38d6f683e51cc.png

↑↑↑

点击查看视频

厦门线上、线下同步课程

 

最新ChatGPT/GPT4科研技术应用与AI绘图及论文高效写作培训班    

福建*厦门:现场时间:2023年12月26日-30日【21日全天报到,全程四天教学】

 直播时间:2023年12月27日-30日 【腾讯会议

【参加本次会议学习完成后,赠送一套完整的视频教程】

前言

企事业单位及相关学者:

2023年随着OpenAI开发者大会的召开,最重磅更新当属GPTs,多模态API,未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义,不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车,就有可能被淘汰在这个数字化时代,如何能高效地处理文本、文献查阅、PPT编辑、编程、绘图和论文写作已经成为您成功的关键。而 ChatGPT,作为一种强大的自然语言处理模型,具备显著优势,能够帮助您在各个领域取得突破。 

ChatGPT 在论文写作与编程方面也具备强大的能力。无论是进行代码生成、错误调试还是解决编程难题,ChatGPT都能为您提供实用且高质量的建议和指导,提高编程效率和准确性。此外,ChatGPT是一位出色的合作伙伴,可以为您提供论文写作的支持。它可以为您提供论文结构指导、段落重组建议,甚至是对论文内容的进一步拓展和丰富。利用ChatGPT的写作能力,您可以更好地组织思路、提升论文的逻辑性和质量。      

ChatGPT/GPT4应用初学者最大的障碍是账号问题,本次会议首先解决的就是账号问题【详情见会议福利】,本课程通过多期的讲解,深入总结参会人员的需求,覆盖了科研工作中的文本、论文、编程、绘图等高级应用,融合众多插件应用,提高工作效率及科研项目开发能力,使GPT真正成为科研工作助手,Ai尚研修特举办“最新ChatGPT/GPT4科研应用与AI绘图及论文高效写作培训班”详情如下:

会议福利

一、每人均可获得 1 个独立可永久使用的 ChatGPT 账号。

二:【超级福利】赠送ChatGPT Plus会员账号(1个月),ChatGPT Plus会员账号的功能包括:

1.无限制ChatGPT模型使用。

2.GPT-4模型使用。

3.GPT-4图像分析功能。

4.GPT-4联网功能。

5.GPT-4高级数据分析功能。

6.GPT-4高级插件功能。

7.DALLE-3高级AI绘图功能。

三:会议结束后赠送一套完整的视频教程。

四:参加本次课程后,还可免费参加后期相同ChatGPT课程(线上直播参与一次,现场不限次数,仅限本人参加)

培训目标

1、熟练掌握ChatGPT提示词技巧及各种应用方法,并成为工作中的助手。

2、通过案例掌握ChatGPT撰写、修改论文及工作报告,提供写作能力及优化工作

3、熟练掌握ChatGPT融合相关插件的应用,完成数据分析、编程以及深度学习等相关科研项目。

4、掌握各种AI绘图工具,随意生成各类型性图像。

5、总结会议参加人员关注问题,现场进行辅助指导及交流。

教学特色

1、原理深入浅出的讲解;   

2、技巧方法讲解,提供所有案例数据及代码;

3、与项目案例相结合讲解实现方法,对接实际工作应用 ;

4、跟学上机操作、独立完成案例操作练习、全程问题跟踪解析;

5、课程结束专属助学群辅助巩固学习及实际工作应用交流,不定期召开线上答疑; 

课程安排

课程安排

学习内容

专题一

OpenAI开发者大会最新技术发展及最新功能应用

1.1最新大模型GPT-4 Turbo详细讲解

1.2最新发布的高级数据分析,AI画图,图像识别,文档API

1.3 GPT Store讲解

1.4(实操演练)从0到1创建自己的GPT应用

66980b54b1e5ff71a1af350871d4b666.png

专题二

定制自己的GPTs

2.1热门的自定义GPTs使用介绍

2.2通过聊天交流的方式制作自己的GPTs

2.3通过自定义的方式制作自己的GPTs

2.4 GPTs的3种分发方式

2.5 GPTs的action功能介绍

专题三

AIGC基础学习

3.1深度学习常用架构介绍

3.2 GPT1-4模型介绍

3.3 AIGC技术发展

3.4大语言模型的评估标准

3.5 ChatGPT/GPT4官网使用方法

3.6优秀国内大模型推荐

3.7 LLM与搜索引擎:差异与联系

3b6c7b22f2df5e2da2013fcf9effe974.png

专题四

提示词工程高级技巧
【讲解+实践】

4.1提示词工程介绍

4.2如何写好一篇论文的提示词

4.3(实操演练)初识LLM:角色扮演的艺术

4.4(实操演练)调整LLM的语调与表达方式

4.5(实操演练)定义LLM的具体任务与目标

4.6(实操演练)探索LLM与上下文的密切关系

4.7(实操演练)零样本学习:强化逻辑推理

4.8(实操演练)多样本学习:模型模仿能力提升

4.9(实操演练)自洽性检验:数学能力加强

4.10(实操演练)知识生成:提高模型的信息处理能力

f4766aa2dbc285618e7352268e27e725.png

专题五

ChatGPT/GPT4的实用案例

【讲解+实践】

5.1(实操演练)ChatGPT/GPT4是最好用的翻译软件

5.2(实操演练)AI助力高效表格数据创建

5.3(实操演练)AI在数据处理中的实际操作

5.4(实操演练)苏格拉底式教学法在AI中的运用

5.5(实操演练)如何与AI交流科研问题

5.6(实操演练)AI助力文本数据整理与分析

5.7(实操演练)AI在用户评论分析中的应用

5.8(实操演练)AI撰写专业报告的技巧

5.9(实操演练)让AI根据知识点出题

5.10(实操演练)使用AI工具快速产出高端PPT的4种方法

5.11(实操演练)使用AI工具快速产出短视频

5.12(实操演练)快速制作流程图和思维导图

d095a4ce2edfe6bbacfb7caef7021ea1.png

f474514fe069cd3988d2141c941d63cb.png

c3aace023269c81a5395f7c91e07695e.png

e626f8c583d9efc45ba24069c8ba03d0.png

专题六

让ChatGPT/GPT4成为你的论文助手【讲解+实践】

6.1(实操演练)分析论文得出审稿意见

6.2(实操演练)进行论文内容问答

6.3(实操演练)生成论文摘要

6.4(实操演练)写论文综述并标注内容来源

6.5(实操演练)中/英文论文润色的4种方法

6.6(实操演练)进行论文降重的技巧

6.7(实操演练)查找某个观点或内容相关的论文

6.8(实操演练)对多篇论文进行分析对比

6.9(实操演练)如何防止AI生成的内容被检测

6.10(实操演练)生成完整长篇论文的技巧

074edb7d3694edf06b8fc0695510a040.png

aabdcf147870d4f6d5725fdd6594fe57.png

专题七

python基础学习【讲解+实践】

7.1 python的应用场景

7.2(实操演练)python环境安装配置

7.3(实操演练)print使用

7.4(实操演练)运算符和变量

7.5(实操演练)循环

7.6(实操演练)列表元组字典

7.7(实操演练)if条件

7.8(实操演练)函数

7.9(实操演练)模块

7.10(实操演练)类的使用

7.11(实操演练)文件读写

7.12(实操演练)异常处理

专题八

科学计算模块Numpy和绘图模块Matplotlib学习【讲解+实践】

8.1(实操演练)numpy的属性

8.2(实操演练)创建array

8.3(实操演练)numpy的运算

8.4(实操演练)随机数生成以及矩阵的运算

8.5(实操演练)numpy的索引

8.6(实操演练)array合并

8.7(实操演练)Matplotlib基础用法

8.8(实操演练)figure图像

8.9(实操演练)设置坐标轴

8.10(实操演练)legend图例

8.11(实操演练)scatter散点图

专题九

机器学习算法应用【讲解+实践】

9.1机器学习概述

9.2训练集/验证集/测试集

9.3监督学习与无监督学习

9.4分类/回归/聚类算法

9.5机器学习算法应用分析

9.6(实操演练)使用回归算法完成波士顿房价预测

9.7(实操演练)使用KNN算法完成鸢尾花分类

9.8(实操演练)使用逻辑回归算法完成糖尿病预测

9.9(实操演练)分析特征重要性(哪些特征对标签的影响最大)

9.10(实操演练)机器学习特征工程完整流程

专题十

深度学习算法基础【讲解+实践】

10.1单层感知器

10.2激活函数,损失函数和梯度下降法

10.3 BP算法介绍

10.4梯度消失问题

10.5多种激活函数介绍

10.6(实操演练)BP算法解决手写数字识别问题

专题十一

深度学习框架Tensorflow应用【讲解+实践】

11.1(实操演练)Mnist数据集和softmax讲解

11.2(实操演练)使用BP神经网络识别图片

11.3(实操演练)交叉熵(cross-entropy)讲解和使用

11.4(实操演练)欠拟合/正确拟合/过拟合

11.5(实操演练)各种优化器Optimizer

11.6(实操演练)模型保存和模型载入方法

专题十二

深度学习算法-卷积神经网络CNN应用【讲解+实践】

12.1 CNN卷积神经网络

12.2卷积的局部感受野,权值共享介绍。

12.3卷积的具体计算方式

12.4池化层介绍(均值池化、最大池化)

12.5 same padding和valid padding介绍

12.6 LeNET-5卷积网络介绍

12.7实操演练)CNN手写数字识别案例

专题十三

深度学习算法-长短时记忆网络LSTM应用

【讲解+实践】

13.1 RNN循环神经网络介绍

13.2 RNN具体计算分析

13.3长短时记忆网络LSTM介绍

13.4输入门,遗忘门,输出门具体计算分析

13.5堆叠LSTM介绍

13.6双向LSTM介绍

13.7(实操演练)使用LSTM进行设备故障预测

专题十四

基于深度学习模型的图像识别
【讲解+实践】

14.1 VGG16模型详解

14.2 ResNet模型详解

14.3 EfficientNet模型详解

14.4(实操演练)下载训练好的1000分类图像识别模型

14.5(实操演练)使用训练好的图像识别模型进行各种图像分类

14.6(实操演练)使用迁移学习训练自己的天气现象分类模型

专题十五

让ChatGPT/GPT4成为你的编程助手
【讲解+实践】

15.1使用ChatGPT/GPT4写程序的注意事项

15.2(实操演练)让AI对代码进行详细讲解

15.3(实操演练)进行代码纠错及自动修改

15.4(实操演练)使用AI工具读取本地数据的技巧

15.5(实操演练)绘制折线图,柱状图,饼图等各种统计分析图表

15.6(实操演练)让AI工具帮你自动进行数据分析和特征工程

15.7(实操演练)使用你的数据产生机器学习模型进行分类预测

15.8(实操演练)根据你的数据产生深度学习模型进行回归预测

15.9(实操演练)自动化AI编程助手的使用

5593d07bcab821abbb166b75aa9ee526.png

专题十六

让ChatGPT/GPT4进行数据处理
【讲解+实践】

16.1(实操演练)让AI正确读取表格数据

16.2(实操演练)让AI理解百万行数据

16.3(实操演练)使用AI进行数据可视化

16.4(实操演练)使用AI进行数据缺失值处理

16.5(实操演练)使用AI进行数据归一化

16.6(实操演练)使用AI进行特征筛选

16.7(实操演练)使用AI输出表格数据

16.8(实操演练)使用AI输出特征工程处理后的数据

16.9(实操演练)使用AI绘制统计分析图表

专题十七
ChatGPT/GPT4在地球科学方面的应用
【讲解+实践】

17.1(实操演练)用GPT绘制世界地图海岸线

17.2(实操演练)用GPT绘制不同的地图投影

17.3(实操演练)用GPT绘制南极地投影

17.4(实操演练)用GPT绘制地球各种关键变量的图

17.5(实操演练)用GPT绘制台风总降水量图

17.6(实操演练)用GPT绘制台风风速图

17.7(实操演练)用GPT计算台风总降水量

17.8(课实操演练)用GPT对遥感图像光谱数据进行机器学习建模分类

0b6e6fffbb26257a8be34084b6af9dcb.png

8f3cd98661f73444e0b447e141c569e7.png

专题十
ChatGPT/GPT4高级开发应用
【讲解+实践】

18.1(实操演练)GPT模型API接口程序使用

18.2(实操演练)GPT模型参数调节

18.3(实操演练)用GPT程序API接口制作聊天机器人

18.4(实操演练)用GPT程序API接口制作自动订餐机器人

18.5(实操演练)用GPT程序API批量处理大量文本数据

18.6(实操演练)用DALLE-3程序API接口生成图片

18.7(实操演练)GPT4本地文件上传功能使用

18.8(实操演练)GPT4联网功能使用

18.9(实操演练)GPT4图像识别功能应用

18.10(实操演练)GPT高级数据分析功能详解

159afe58ddef105f5720db9b6a244ce5.png

7d9e9182178d6bda394dd06ff4e928ea.png

专题十

AI绘图工具Midjourney和DALLE3应用
【讲解+实践】

19.1 AI画图原理介绍

19.2(实操演练)Midjourney工具的基础操作

19.3(实操演练)remix模式介绍

19.4(实操演练)blend命令介绍

19.5(实操演练)describe命令介绍

19.6(实操演练)图生图通过图片生成新的图片

19.7(实操演练)Midjourney的参数和设置介绍

19.8(实操演练)Midjourney科研作图介绍

19.9(实操演练)DALL-E 3模型介绍

19.10(实操演练)DALL-E 3根据上下文内容修改图片

19.11(实操演练)DALL-E 3在图像中生成特定文字

19.12(实操演练)DALL-E 3绘图结果的不断优化

143e5b0b0a2186693f46b4f2551e73d2.png

e0568faca63f29f39657f989e84ab18c.png

专题二十
AI绘图工具Stable Diffusion基础应用
【讲解+实践】

20.1(实操演练)Stable Diffusion工具介绍

20.2(实操演练)Stable Diffusion环境部署介绍

20.3(实操演练)通过文字生成图片

20.4(实操演练)通过图片生成图片

20.5(实操演练)图像智能高清算法

20.6(实操演练)使用Lora模型产生写实人物图像

20.7(实操演练)进行图像的局部重绘

20.8(实操演练)Controlnet插件介绍

20.9(实操演练)使用线稿图生成装修和建筑

20.10(实操演练)使用线稿图给图片上色

20.11(实操演练)产生特定姿态的人物图像

扫码咨询详情!

b1b15be4657a159ed628b579db70bb99.jpeg

03

往期回顾和学员反馈

6f8682b4b4c5e118697d6753c0ec3fae.jpeg

414d10e664301a2a265af6e9760b9a6b.jpeg

0754f7fb1262ac5ffc3af83231a02632.jpeg

b7084227504a068aab932413d271cee8.png

0dd587175ef6e709dfe040ce2a4e0d86.png

04

AI尚研修科研服务平台

6521da34d913d55043c0d1f0a109b10b.jpeg

NO1:平台逐步建立完整的教学方案,深度促进科研交叉技术融合,成为众多课题组及个人实践技术提升首选内容。

NO2Ai尚研修为了更好的发展,特邀胡中民老师、张光学老师、郁磊老师、胡恩柱老师、金溪老师、汪靓老师、张东辉老师等30多位专家学者作为顾问专家,为Ai尚研修平台长期发展提供了宝贵的建议及工作指导。

3Ai尚研修创建云导师教学模式,最大化促进交叉学科的专业问答及交流,已经建立云导师社群300+,不仅可以学习,还为您身边带来专业的导师。

4Ai尚研修建立了长期免费学术讲座:聚焦基础原理、前沿热点技术、庖丁解文、实践技术、成果推广等专题,每月4期左右,已开展完200+期,上平台都可以免费观看前期讲座。

NO5为了深度对接用户需求,依托专家团队,针对技术咨询服务、数据处理合作、软件开发、搭建高性能计算平台等领域开展合作。

0663908c42e8f5a3296bf8465ac8b033.jpeg

小编为您进行逐一展示:登录平台,您了解的更清晰,还有好礼哦!a7c608b26797e304e5d09504d16e2286.png

NO1:体系课程

a7a0f091ee8365d1fa524c2a42f26da9.jpeg

NO2:往期学术讲座及技术专题部分展示【免费】

e8b157fe39a8ee9fa66a7023c426cfc0.jpeg

d0ea2215719c19e82ec3ae8babca1032.jpeg

NO3:云导师【点亮科研简学践行、您的随行导师平台】

01b10a7f1a7bde405b39bee543d61054.jpeg

89a4ae985b8e54df12ec2ea07e838366.jpeg

78d90706a58e3d282f1acdd1c7e16310.png

cff3f9bba76842f792419109d24ae0e4.png

8a295a2e4cf009f34853aad02206815b.gif

结束

Ai尚研修丨专注科研领域

技术推广,人才招聘推荐,科研活动服务

科研技术云导师,Easy  Scientific  Research

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/201486
推荐阅读
相关标签
  

闽ICP备14008679号