当前位置:   article > 正文

STM32-基本知识梳理8-FATFS文件系统移植_stm32文件系统

stm32文件系统

一、基本概念

1,为什么需要文件系统?

在没有文件系统的存储器中,一般通过手工记录,那些变量存放在那些位置,很难有系统的管理

难以记录有效数据的位置 、难以确定存储介质的剩余空间、 不明确应以何种格式来解读数据

加入文件系统后,就可以引导区、目录等对内部数据进行管控,并且对于数据可以命名,方便以各种格式对应的解析数据;

 

2,文件系统是什么?

1-嵌入式中,最常用的就是文件系统就是FATFS,是一种小型文件系统;

2-FATFS在初步搭建在外部flash或者内存中时,第一次需要进格式化(格式化的本质就是利用spi的读写功能,在存储介质建立了一些组织结构,这些结构包括操作系统引导区、目录和文件

 

3,加入文件系统后的读写过程?

1- 数据都以文件的形式存储;

2- 写入新文件时,先在目录中创建一个文件索引,它指示了文件存放的物理地址,再把数据存储到该地址中;

3- 当需要读取数据时,可以从目录中找到该文件的索引,进而在相应的地址中读取出数据;

4,有文件系统和没有文件系统最大的差异

1-没有文件系统,写入数据和读取数据,需要指定明确的物理地址

2-有文件系统后,文件系统的存在使存取数据时,不再是简单地向某物理地址直接读写,而是要遵循它的读写格式。如经过逻辑转换,一个完整的文件可能被分开成多段存储到不连续的物理地址,使用目录或链表的方式来获知下一段的位置。

二、文件系统示意图说明

1,文件分配表,存放A.TXT     B.TXT     C.TXT

 

2,对应的目录分配表

主要参数:1:文件名 ;2,开始簇;3,文件大小;4,创建时间;5,读取属性;

3, 实际文件分配表:

文件 a.txt 我们根据目录 项中指定的 a.txt 的首簇为 2,然后找到文件分配表的第 2 簇记录,上面登记 的是 3,就能确定下一簇是 3。找到文件分配表的第 3 簇记录,上面登记的 是 4,就能确定下一簇是 4......直到指到第 11 簇,发现下一个指向是 FF,就是结束。文件便读取完毕。

 

在内存是删除B文件后,创建D.TXT后

文件D,在物理内存中被分为两块,目录示意图如下:

 实际文件分配如下:

 

至此文件系统的基本内容完毕,下面介绍FATFS文件系统及移植过程


三、FATFS文件管理系统介绍

1,FATFS系统在系统中的位置

APP接口----FATFS----底层接口

文件系统本质上,可以理解为一个函数B,外部可以通过函数A调用函数B,而函数B不接触底层操作,而是通过调用函数C对底层存储进行操作。

 

2,FATFS中重要的文件及其作用

1 - integer.h:文件中包含了一些数值类型定义,对一些类型进行typedef

2 -  diskio.c:包含底层存储介质的操作函数,这些函数需要用户自己实现,主要添加底层驱动函数。我们主要的底层接口都要在这边调用执行

3 -  ff.c: FatFs核心文件,文件管理的实现方法。该文件独立于底层介质操作文件的函数,利用这些函数实现文件的读写,在主函数中要包含ff.h,从而执行fatfs文件系统


4- cc936.c:本文件在option目录下,是简体中文支持所需要添加的文件,包含了简体中文的GBK和Unicode相互转换功能函数。


5-ffconf.h:这个头文件包含了对FatFs功能配置的宏定义,通过修改这些宏定义就可以裁剪FatFs的功能。如需要支持简体中文,需要把ffconf.h中的_CODE_PAGE 的宏改成936并把上面的cc936.c文件加入到工程之中。

 至此,文件系统的基本介绍到此结束,下面开始移植


四、FATFS文件系统移植

1,文件系统移植,本质上就是把文件系统对于下层的硬件操作接口,与文件系统本身的操作给建立连接

2,移植需要借用spi-flash控制的源码,在spi-flash控制的源码的基础上,添加文件系统

 

3,主要的文件需要包含上述的6个c文件或者h文件,在文件文件中,需要调整主要是diskio.c \        ffconf.h

下面开始逐步说明

diskio.c的底层硬件操作的移植

1-头文件,包含flash的底层头文件

  1. #include "diskio.h" /* FatFs lower layer API */
  2. #include "./flash/bsp_spi_flash.h"

2-宏定义,设备名称

  1. #define SDCARD 0
  2. #define FLASH_SPI 1
  3. /*-----------------------------------------------------------------------*/
  4. /* Get Drive Status */
  5. /*-----------------------------------------------------------------------*/
  6. //diskio是底层硬件和FATFs操作的连接渠道,主要的配置都在这边执行

3-设备状态确认

实际上是通过SPI_FLASH_ReadID()==sFLASH_ID 来判定设备是否正常

  1. DSTATUS disk_status (
  2. BYTE pdrv /* Physical drive nmuber to identify the drive */
  3. )
  4. {
  5. DSTATUS stat;
  6. // int result;
  7. switch (pdrv) {
  8. case SDCARD :
  9. case FLASH_SPI :
  10. //通过读取到flash id来确认状态
  11. if(SPI_FLASH_ReadID()==sFLASH_ID)
  12. {
  13. stat= 0;
  14. }
  15. else
  16. {
  17. stat= STA_NOINIT;
  18. }
  19. // translate the reslut code here
  20. return stat;
  21. }
  22. return STA_NOINIT;
  23. }

4-设备初始化,实际上调用SPI_FLASH_Init();对GPIO接口、SPI1模块进行底层的初始化操作

  1. DSTATUS disk_initialize (
  2. BYTE pdrv /* Physical drive nmuber to identify the drive */
  3. )
  4. {
  5. // DSTATUS stat;
  6. // int result;
  7. switch (pdrv) {
  8. case SDCARD :
  9. case FLASH_SPI:
  10. SPI_FLASH_Init();
  11. return disk_status(FLASH_SPI);
  12. }
  13. return STA_NOINIT;
  14. }

5-实际上是调用SPI_FLASH_BufferRead(buff, sector*4096, count*4096);

在 disk_read 中的参数要进行转变,每个扇区是4096个字节,所以物理初始地址=扇区号*4096;字节数=扇区数*4096

  1. DRESULT disk_read (
  2. BYTE pdrv, /* 型号:Flash 还是SD */
  3. BYTE *buff, /* 指针传递回数据 */
  4. DWORD sector, /* 扇区号 */
  5. UINT count /* 要读取的扇区数 */
  6. )
  7. {
  8. DRESULT res;
  9. // int result;
  10. switch (pdrv) {
  11. case SDCARD :
  12. case FLASH_SPI:
  13. SPI_FLASH_BufferRead(buff, sector*4096, count*4096);
  14. res= RES_OK;
  15. return res;
  16. }
  17. return RES_PARERR;
  18. }

6-本质上是调用了  、

SPI_FLASH_SectorErase(sector*4096);

SPI_FLASH_BufferWrite((BYTE *)buff, sector*4096, count*4096);

在flash中,写入数据要先擦除再写入

ps:在写入时,建议加一个等待busy,(具体看我上一篇 )这样更稳妥。但是我看野火源码中没有加,似乎问题不大?

  1. #if _USE_WRITE
  2. DRESULT disk_write (
  3. BYTE pdrv, /* Physical drive nmuber to identify the drive */
  4. const BYTE *buff, /* Data to be written */
  5. DWORD sector, /* Sector address in LBA */
  6. UINT count /* Number of sectors to write */
  7. )
  8. {
  9. DRESULT res;
  10. // int result;
  11. switch (pdrv) {
  12. case SDCARD :
  13. case FLASH_SPI:
  14. SPI_FLASH_SectorErase(sector*4096);
  15. SPI_FLASH_BufferWrite((BYTE *)buff, sector*4096, count*4096);
  16. res= RES_OK;
  17. return res;
  18. }
  19. return RES_PARERR;
  20. }
  21. #endif

7-这边主要时杂项指令,调用这个函数,通过buff指针传递回去;

这边void*指针的数据传递,需关注

*(DWORD*) buff=2048; 

*(WORD*) buff=4096; 

  1. /*-----------------------------------------------------------------------*/
  2. /* Miscellaneous Functions */
  3. /*-----------------------------------------------------------------------*/
  4. #if _USE_IOCTL
  5. DRESULT disk_ioctl (
  6. BYTE pdrv, /* Physical drive nmuber (0..) */
  7. BYTE cmd, /* Control code */
  8. void *buff /* Buffer to send/receive control data */
  9. )
  10. {
  11. DRESULT res;
  12. // int result;
  13. switch (pdrv) {
  14. case SDCARD :
  15. case FLASH_SPI:
  16. switch(cmd)
  17. {
  18. //扇区数量
  19. case GET_SECTOR_COUNT:
  20. *(DWORD*) buff=2048;
  21. break;
  22. //每个扇区大小
  23. case GET_SECTOR_SIZE:
  24. *(WORD*) buff=4096;
  25. break;
  26. //每次擦除扇区的最小个数
  27. case GET_BLOCK_SIZE:
  28. *(DWORD*) buff=1;
  29. break;
  30. }
  31. res= RES_OK;
  32. return res;
  33. }
  34. return RES_PARERR;
  35. }
  36. #endif

8-时间项,理论上要关联rtc,但是这边直接return 0

  1. DWORD get_fattime (void)
  2. {
  3. return 0;
  4. }

ffconf.h的底层硬件操作的移植

看英文注释即可

  1. /*---------------------------------------------------------------------------/
  2. / FatFs - FAT file system module configuration file R0.11a (C)ChaN, 2015
  3. /---------------------------------------------------------------------------*/
  4. #define _FFCONF 64180 /* Revision ID */
  5. /*---------------------------------------------------------------------------/
  6. / Function Configurations
  7. /---------------------------------------------------------------------------*/
  8. #define _FS_READONLY 0
  9. /* This option switches read-only configuration. (0:Read/Write or 1:Read-only)
  10. / Read-only configuration removes writing API functions, f_write(), f_sync(),
  11. / f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree()
  12. / and optional writing functions as well. */
  13. #define _FS_MINIMIZE 0
  14. /* This option defines minimization level to remove some basic API functions.
  15. /
  16. / 0: All basic functions are enabled.
  17. / 1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_chmod(), f_utime(),
  18. / f_truncate() and f_rename() function are removed.
  19. / 2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1.
  20. / 3: f_lseek() function is removed in addition to 2. */
  21. #define _USE_STRFUNC 1
  22. /* This option switches string functions, f_gets(), f_putc(), f_puts() and
  23. / f_printf().
  24. /
  25. / 0: Disable string functions.
  26. / 1: Enable without LF-CRLF conversion.
  27. / 2: Enable with LF-CRLF conversion. */
  28. #define _USE_FIND 0
  29. /* This option switches filtered directory read feature and related functions,
  30. / f_findfirst() and f_findnext(). (0:Disable or 1:Enable) */
  31. #define _USE_MKFS 1 //在格式化时刻,需要配置成1
  32. /* This option switches f_mkfs() function. (0:Disable or 1:Enable) */
  33. #define _USE_FASTSEEK 0
  34. /* This option switches fast seek feature. (0:Disable or 1:Enable) */
  35. #define _USE_LABEL 0
  36. /* This option switches volume label functions, f_getlabel() and f_setlabel().
  37. / (0:Disable or 1:Enable) */
  38. #define _USE_FORWARD 0
  39. /* This option switches f_forward() function. (0:Disable or 1:Enable)
  40. / To enable it, also _FS_TINY need to be set to 1. */
  41. /*---------------------------------------------------------------------------/
  42. / Locale and Namespace Configurations
  43. /---------------------------------------------------------------------------*/
  44. #define _CODE_PAGE 932
  45. /* This option specifies the OEM code page to be used on the target system.
  46. / Incorrect setting of the code page can cause a file open failure.
  47. /
  48. / 1 - ASCII (No extended character. Non-LFN cfg. only)
  49. / 437 - U.S.
  50. / 720 - Arabic
  51. / 737 - Greek
  52. / 771 - KBL
  53. / 775 - Baltic
  54. / 850 - Latin 1
  55. / 852 - Latin 2
  56. / 855 - Cyrillic
  57. / 857 - Turkish
  58. / 860 - Portuguese
  59. / 861 - Icelandic
  60. / 862 - Hebrew
  61. / 863 - Canadian French
  62. / 864 - Arabic
  63. / 865 - Nordic
  64. / 866 - Russian
  65. / 869 - Greek 2
  66. / 932 - Japanese (DBCS)
  67. / 936 - Simplified Chinese (DBCS)
  68. / 949 - Korean (DBCS)
  69. / 950 - Traditional Chinese (DBCS)
  70. */
  71. #define _USE_LFN 0
  72. #define _MAX_LFN 255
  73. /* The _USE_LFN option switches the LFN feature.
  74. /
  75. / 0: Disable LFN feature. _MAX_LFN has no effect.
  76. / 1: Enable LFN with static working buffer on the BSS. Always NOT thread-safe.
  77. / 2: Enable LFN with dynamic working buffer on the STACK.
  78. / 3: Enable LFN with dynamic working buffer on the HEAP.
  79. /
  80. / When enable the LFN feature, Unicode handling functions (option/unicode.c) must
  81. / be added to the project. The LFN working buffer occupies (_MAX_LFN + 1) * 2 bytes.
  82. / When use stack for the working buffer, take care on stack overflow. When use heap
  83. / memory for the working buffer, memory management functions, ff_memalloc() and
  84. / ff_memfree(), must be added to the project. */
  85. #define _LFN_UNICODE 0
  86. /* This option switches character encoding on the API. (0:ANSI/OEM or 1:Unicode)
  87. / To use Unicode string for the path name, enable LFN feature and set _LFN_UNICODE
  88. / to 1. This option also affects behavior of string I/O functions. */
  89. #define _STRF_ENCODE 3
  90. /* When _LFN_UNICODE is 1, this option selects the character encoding on the file to
  91. / be read/written via string I/O functions, f_gets(), f_putc(), f_puts and f_printf().
  92. /
  93. / 0: ANSI/OEM
  94. / 1: UTF-16LE
  95. / 2: UTF-16BE
  96. / 3: UTF-8
  97. /
  98. / When _LFN_UNICODE is 0, this option has no effect. */
  99. #define _FS_RPATH 0
  100. /* This option configures relative path feature.
  101. /
  102. / 0: Disable relative path feature and remove related functions.
  103. / 1: Enable relative path feature. f_chdir() and f_chdrive() are available.
  104. / 2: f_getcwd() function is available in addition to 1.
  105. /
  106. / Note that directory items read via f_readdir() are affected by this option. */
  107. /*---------------------------------------------------------------------------/
  108. / Drive/Volume Configurations
  109. /---------------------------------------------------------------------------*/
  110. #define _VOLUMES 2
  111. /* Number of volumes (logical drives) to be used. */
  112. #define _STR_VOLUME_ID 0
  113. #define _VOLUME_STRS "RAM","NAND","CF","SD1","SD2","USB1","USB2","USB3"
  114. /* _STR_VOLUME_ID option switches string volume ID feature.
  115. / When _STR_VOLUME_ID is set to 1, also pre-defined strings can be used as drive
  116. / number in the path name. _VOLUME_STRS defines the drive ID strings for each
  117. / logical drives. Number of items must be equal to _VOLUMES. Valid characters for
  118. / the drive ID strings are: A-Z and 0-9. */
  119. #define _MULTI_PARTITION 0
  120. /* This option switches multi-partition feature. By default (0), each logical drive
  121. / number is bound to the same physical drive number and only an FAT volume found on
  122. / the physical drive will be mounted. When multi-partition feature is enabled (1),
  123. / each logical drive number is bound to arbitrary physical drive and partition
  124. / listed in the VolToPart[]. Also f_fdisk() funciton will be available. */
  125. #define _MIN_SS 512
  126. #define _MAX_SS 4096
  127. /* These options configure the range of sector size to be supported. (512, 1024,
  128. / 2048 or 4096) Always set both 512 for most systems, all type of memory cards and
  129. / harddisk. But a larger value may be required for on-board flash memory and some
  130. / type of optical media. When _MAX_SS is larger than _MIN_SS, FatFs is configured
  131. / to variable sector size and GET_SECTOR_SIZE command must be implemented to the
  132. / disk_ioctl() function. */
  133. #define _USE_TRIM 0
  134. /* This option switches ATA-TRIM feature. (0:Disable or 1:Enable)
  135. / To enable Trim feature, also CTRL_TRIM command should be implemented to the
  136. / disk_ioctl() function. */
  137. #define _FS_NOFSINFO 0
  138. /* If you need to know correct free space on the FAT32 volume, set bit 0 of this
  139. / option, and f_getfree() function at first time after volume mount will force
  140. / a full FAT scan. Bit 1 controls the use of last allocated cluster number.
  141. /
  142. / bit0=0: Use free cluster count in the FSINFO if available.
  143. / bit0=1: Do not trust free cluster count in the FSINFO.
  144. / bit1=0: Use last allocated cluster number in the FSINFO if available.
  145. / bit1=1: Do not trust last allocated cluster number in the FSINFO.
  146. */
  147. /*---------------------------------------------------------------------------/
  148. / System Configurations
  149. /---------------------------------------------------------------------------*/
  150. #define _FS_TINY 0
  151. /* This option switches tiny buffer configuration. (0:Normal or 1:Tiny)
  152. / At the tiny configuration, size of the file object (FIL) is reduced _MAX_SS
  153. / bytes. Instead of private sector buffer eliminated from the file object,
  154. / common sector buffer in the file system object (FATFS) is used for the file
  155. / data transfer. */
  156. #define _FS_NORTC 0
  157. #define _NORTC_MON 1
  158. #define _NORTC_MDAY 1
  159. #define _NORTC_YEAR 2015
  160. /* The _FS_NORTC option switches timestamp feature. If the system does not have
  161. / an RTC function or valid timestamp is not needed, set _FS_NORTC to 1 to disable
  162. / the timestamp feature. All objects modified by FatFs will have a fixed timestamp
  163. / defined by _NORTC_MON, _NORTC_MDAY and _NORTC_YEAR.
  164. / When timestamp feature is enabled (_FS_NORTC == 0), get_fattime() function need
  165. / to be added to the project to read current time form RTC. _NORTC_MON,
  166. / _NORTC_MDAY and _NORTC_YEAR have no effect.
  167. / These options have no effect at read-only configuration (_FS_READONLY == 1). */
  168. #define _FS_LOCK 0
  169. /* The _FS_LOCK option switches file lock feature to control duplicated file open
  170. / and illegal operation to open objects. This option must be 0 when _FS_READONLY
  171. / is 1.
  172. /
  173. / 0: Disable file lock feature. To avoid volume corruption, application program
  174. / should avoid illegal open, remove and rename to the open objects.
  175. / >0: Enable file lock feature. The value defines how many files/sub-directories
  176. / can be opened simultaneously under file lock control. Note that the file
  177. / lock feature is independent of re-entrancy. */
  178. #define _FS_REENTRANT 0
  179. #define _FS_TIMEOUT 1000
  180. #define _SYNC_t HANDLE
  181. /* The _FS_REENTRANT option switches the re-entrancy (thread safe) of the FatFs
  182. / module itself. Note that regardless of this option, file access to different
  183. / volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
  184. / and f_fdisk() function, are always not re-entrant. Only file/directory access
  185. / to the same volume is under control of this feature.
  186. /
  187. / 0: Disable re-entrancy. _FS_TIMEOUT and _SYNC_t have no effect.
  188. / 1: Enable re-entrancy. Also user provided synchronization handlers,
  189. / ff_req_grant(), ff_rel_grant(), ff_del_syncobj() and ff_cre_syncobj()
  190. / function, must be added to the project. Samples are available in
  191. / option/syscall.c.
  192. /
  193. / The _FS_TIMEOUT defines timeout period in unit of time tick.
  194. / The _SYNC_t defines O/S dependent sync object type. e.g. HANDLE, ID, OS_EVENT*,
  195. / SemaphoreHandle_t and etc.. A header file for O/S definitions needs to be
  196. / included somewhere in the scope of ff.c. */
  197. #define _WORD_ACCESS 0
  198. /* The _WORD_ACCESS option is an only platform dependent option. It defines
  199. / which access method is used to the word data on the FAT volume.
  200. /
  201. / 0: Byte-by-byte access. Always compatible with all platforms.
  202. / 1: Word access. Do not choose this unless under both the following conditions.
  203. /
  204. / * Address misaligned memory access is always allowed to ALL instructions.
  205. / * Byte order on the memory is little-endian.
  206. /
  207. / If it is the case, _WORD_ACCESS can also be set to 1 to reduce code size.
  208. / Following table shows allowable settings of some type of processors.
  209. /
  210. / ARM7TDMI 0 *2 ColdFire 0 *1 V850E 0 *2
  211. / Cortex-M3 0 *3 Z80 0/1 V850ES 0/1
  212. / Cortex-M0 0 *2 x86 0/1 TLCS-870 0/1
  213. / AVR 0/1 RX600(LE) 0/1 TLCS-900 0/1
  214. / AVR32 0 *1 RL78 0 *2 R32C 0 *2
  215. / PIC18 0/1 SH-2 0 *1 M16C 0/1
  216. / PIC24 0 *2 H8S 0 *1 MSP430 0 *2
  217. / PIC32 0 *1 H8/300H 0 *1 8051 0/1
  218. /
  219. / *1:Big-endian.
  220. / *2:Unaligned memory access is not supported.
  221. / *3:Some compilers generate LDM/STM for mem_cpy function.
  222. */

下面可以在mian中操作:

1 - 包含对应头文件,fatfs包含#include "ff.H"

  1. #include "stm32f10x.h" // Device header
  2. #include "./led/bsp_led.h"
  3. #include "BSP_USART.H"
  4. #include "./flash/bsp_spi_flash.h"
  5. #include "ff.H"

2 - 相关变量定义

1-一个文件系统对应一个系统对象FATFS。(这边不能定义在main函数中,容易栈溢出)

例如SD卡和flash中都要用FATFS,则需要定义两个系统对象

2- 文件对象FIL,具体的文件类型;

3- 状态,文件操作结果FRESULT

  1. FATFS fs_falsh; /* FatFs文件系统对象 */
  2. uint8_t writebuf[]="这是fatfs写入测试";
  3. uint8_t readbuf[30]="";
  4. FRESULT state; /* 文件操作结果 */
  5. FIL fp; /* 文件对象 */
  6. UINT write_size=0;
  7. UINT read_size=0;

3-文件启动

1-启动首先第一步,是挂载系统。如果系统存在,挂载结果为FR_OK;如果系统不存在FR_NO_FILESYSTEM,则格式化处理;

2-格式化完成后,需要取消挂载一次,在重新挂载;

  1. printf("测试开始:\n");
  2. //启动文件系统
  3. state=f_mount (&fs_falsh,"1:",1);
  4. if(state==FR_OK)
  5. {
  6. printf("系统挂载完成:\n");
  7. }
  8. else
  9. {
  10. printf("系统挂载失败 ,%d:\n",state);
  11. }
  12. if(state==FR_NO_FILESYSTEM)
  13. {
  14. printf("格式化处理\n");
  15. state=f_mkfs("1:",0,0);
  16. if(state==FR_OK)
  17. {
  18. //格式化后,先取消挂载再重新挂载
  19. printf("》FLASH已成功格式化文件系统。\r\n");
  20. f_mount (NULL,"1:",1); //取消
  21. f_mount (&fs_falsh,"1:",1); //重新挂栽
  22. LED_GREEN;
  23. }
  24. else
  25. {
  26. printf("《《格式化失败。》》\r\n");
  27. LED_RED;
  28. }
  29. //格式化后,先取消挂载再重新挂载
  30. f_mount (NULL,"1:",1); //取消
  31. f_mount (&fs_falsh,"1:",1); //重新挂栽
  32. }

4,文件的读取,写入操作

1- 写入和读取文件,要先open,才能进行操作

2- 如果写入完成,立即读取,则需要调用lseek进行重新定位,才能读取,这是由文件光标位置决定,相当于退后光标;

3-如果先f_close,再进行读取,则无需lseek

4-

  1. //打开文件fopen
  2. state=f_open (&fp,"1:abc.txt",FA_OPEN_ALWAYS|FA_WRITE|FA_READ );
  3. if(state==FR_OK)
  4. {
  5. printf("open abc ok\n");
  6. state=f_write(&fp,writebuf,sizeof(writebuf),&write_size);
  7. if(state==FR_OK)
  8. {
  9. printf("写入完成 %d 字节",write_size);
  10. printf("写入后立马读取\r\n");//写入后立即读取,需要lseek重新定位
  11. f_lseek(&fp,4);
  12. state=f_read(&fp,readbuf,f_size(&fp),&read_size);
  13. if(state==FR_OK)
  14. {
  15. printf("读取完成 %d 字节\n",read_size);
  16. printf("内容是:%s",readbuf);
  17. LED_RED;
  18. }
  19. }
  20. f_close(&fp);
  21. }
  22. else
  23. {
  24. printf("not open");
  25. }
  26. printf("****** 即将进行文件读取测试... ******\r\n");
  27. state=f_open (&fp,"1:abc.txt",FA_OPEN_ALWAYS|FA_READ);
  28. if(state==FR_OK)
  29. {
  30. printf("open abc ok with read\n");
  31. state=f_read(&fp,readbuf,f_size(&fp),&read_size);
  32. if(state==FR_OK)
  33. {
  34. printf("读取完成 %d 字节\n",read_size);
  35. printf("内容是:%s",readbuf);
  36. LED_RED;
  37. }
  38. }

以上,文件系统FATFS移植,主体部分完成。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/463997
推荐阅读
相关标签
  

闽ICP备14008679号