赞
踩
=========
· 所有数据库对象名称必须使用小写字母并用下划线分割
· 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来)
· 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符
· 临时库表必须以tmp_为前缀并以日期为后缀,备份表必须以bak_为前缀并以日期(时间戳)为后缀
· 所有存储相同数据的列名和列类型必须一致(一般作为关联列,如果查询时关联列类型不一致会自动进行数据类型隐式转换,会造成列上的索 引失效,导致查询效率降低)
二、数据库基本设计规范
===========
1、所有表必须使用Innodb存储引擎
没有特殊要求(即Innodb无法满足的功能如:列存储,存储空间数据等)的情况下,所有表必须使用Innodb存储引擎(mysql5.5之前默认使用Myisam,5.6以后默认的为Innodb)Innodb 支持事务,支持行级锁,更好的恢复性,高并发下性能更好
2、数据库和表的字符集统一使用UTF8
兼容性更好,统一字符集可以避免由于字符集转换产生的乱码,不同的字符集进行比较前需要进行转换会造成索引失效
3、所有表和字段都需要添加注释
使用comment从句添加表和列的备注 从一开始就进行数据字典的维护
4、尽量控制单表数据量的大小,建议控制在500万以内
500万并不是MySQL数据库的限制,过大会造成修改表结构,备份,恢复都会有很大的问题
可以用历史数据归档(应用于日志数据),分库分表(应用于业务数据)等手段来控制数据量大小
5、谨慎使用MySQL分区表
分区表在物理上表现为多个文件,在逻辑上表现为一个表 谨慎选择分区键,跨分区查询效率可能更低 建议采用物理分表的方式管理大数据
6、尽量做到冷热数据分离,减小表的宽度
MySQL限制每个表最多存储4096列,并且每一行数据的大小不能超过65535字节 减少磁盘IO,保证热数据的内存缓存命中率(表越宽,把表装载进内存缓冲池时所占用的内存也就越大,也会消耗更多的IO) 更有效的利用缓存,避免读入无用的冷数据 经常一起使用的列放到一个表中(避免更多的关联操作)
7、禁止在表中建立预留字段
预留字段的命名很难做到见名识义 预留字段无法确认存储的数据类型,所以无法选择合适的类型 对预留字段类型的修改,会对表进行锁定
8、禁止在数据库中存储图片,文件等大的二进制数据
通常文件很大,会短时间内造成数据量快速增长,数据库进行数据库读取时,通常会进行大量的随机IO操作,文件很大时,IO操作很耗时 通常存储于文件服务器,数据库只存储文件地址信息
9、禁止在线上做数据库压力测试
10、禁止从开发环境,测试环境直接连接生成环境数据库
**三、数据库字段设计规范
**
==================
1、优先选择符合存储需要的最小的数据类型
========================
· 原因
列的字段越大,建立索引时所需要的空间也就越大,这样一页中所能存储的索引节点的数量也就越少也越少,在遍历时所需要的IO次数也就越多, 索引的性能也就越差
· 方法
1)将字符串转换成数字类型存储,如:将IP地址转换成整形数据。
mysql提供了两个方法来处理ip地址:
插入数据前,先用inet_aton把ip地址转为整型,可以节省空间。显示数据时,使用inet_ntoa把整型的ip地址转为地址显示即可。
2)对于非负型的数据(如自增ID、整型IP)来说,要优先使用无符号整型来存储
因为:无符号相对于有符号可以多出一倍的存储空间
VARCHAR(N)中的N代表的是字符数,而不是字节数
使用UTF8存储255个汉字 Varchar(255)=765个字节。过大的长度会消耗更多的内存
2、避免使用TEXT、BLOB数据类型,最常见的TEXT类型可以存储64k的数据
· 建议把BLOB或是TEXT列分离到单独的扩展表中
Mysql内存临时表不支持TEXT、BLOB这样的大数据类型,如果查询中包含这样的数据,在排序等操作时,就不能使用内存临时表,必须使用磁盘临时表进行。
而且对于这种数据,Mysql还是要进行二次查询,会使sql性能变得很差,但是不是说一定不能使用这样的数据类型。
如果一定要使用,建议把BLOB或是TEXT列分离到单独的扩展表中,查询时一定不要使用select * 而只需要取出必要的列,不需要TEXT列的数据时不要对该列进行查询。
· TEXT或BLOB类型只能使用前缀索引
因为MySQL对索引字段长度是有限制的,所以TEXT类型只能使用前缀索引,并且TEXT列上是不能有默认值的。
3、避免使用ENUM类型
· 修改ENUM值需要使用ALTER语句
· ENUM类型的ORDER BY操作效率低,需要额外操作
· 禁止使用数值作为ENUM的枚举值
4、尽可能把所有列定义为NOT NULL
原因:
· 索引NULL列需要额外的空间来保存,所以要占用更多的空间;
· 进行比较和计算时要对NULL值做特别的处理
5、使用TIMESTAMP(4个字节)或DATETIME类型(8个字节)存储时间
TIMESTAMP 存储的时间范围 1970-01-01 00:00:01 ~ 2038-01-19-03:14:07。
TIMESTAMP 占用4字节和INT相同,但比INT可读性高
超出TIMESTAMP取值范围的使用DATETIME类型存储。
经常会有人用字符串存储日期型的数据(不正确的做法):
· 缺点1:无法用日期函数进行计算和比较
· 缺点2:用字符串存储日期要占用更多的空间
6、同财务相关的金额类数据必须使用decimal类型
· 非精准浮点:float,double
· 精准浮点:decimal
Decimal类型为精准浮点数,在计算时不会丢失精度。占用空间由定义的宽度决定,每4个字节可以存储9位数字,并且小数点要占用一个字节。可用于存储比bigint更大的整型数据。
四、索引设计规范
===========
1、限制每张表上的索引数量,建议单张表索引不超过5个
索引并不是越多越好!索引可以提高效率同样可以降低效率。
索引可以增加查询效率,但同样也会降低插入和更新的效率,甚至有些情况下会降低查询效率。
因为mysql优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引来进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,就会增加mysql优化器生成执行计划的时间,同样会降低查询性能。
2、禁止给表中的每一列都建立单独的索引
5.6版本之前,一个sql只能使用到一个表中的一个索引,5.6以后,虽然有了合并索引的优化方式,但是还是远远没有使用一个联合索引的查询方式好
3、每个Innodb表必须有个主键
Innodb是一种索引组织表:数据的存储的逻辑顺序和索引的顺序是相同的。
每个表都可以有多个索引,但是表的存储顺序只能有一种 Innodb是按照主键索引的顺序来组织表的。
不要使用更新频繁的列作为主键,不适用多列主键(相当于联合索引) 不要使用UUID、MD5、HASH、字符串列作为主键(无法保证数据的顺序增长)。
主键建议使用自增ID值。
五、常见索引列建议
=========
· 出现在SELECT、UPDATE、DELETE语句的WHERE从句中的列
· 包含在ORDER BY、GROUP BY、DISTINCT中的字段
并不要将符合1和2中的字段的列都建立一个索引,通常将1、2中的字段建立联合索引效果更好
· 多表join的关联列
六、如何选择索引列的顺序
============
建立索引的目的是:希望通过索引进行数据查找,减少随机IO,增加查询性能 ,索引能过滤出越少的数据,则从磁盘中读入的数据也就越少。
· 区分度最高的放在联合索引的最左侧(区分度=列中不同值的数量/列的总行数);
· 尽量把字段长度小的列放在联合索引的最左侧(因为字段长度越小,一页能存储的数据量越大,IO性能也就越好);
· 使用最频繁的列放到联合索引的左侧(这样可以比较少的建立一些索引)。
七、避免建立冗余索引和重复索引
===============
因为这样会增加查询优化器生成执行计划的时间。
**· 重复索引示例:**primary key(id)、index(id)、unique index(id)
**· 冗余索引示例:**index(a,b,c)、index(a,b)、index(a)
八、优先考虑覆盖索引
==========
对于频繁的查询优先考虑使用覆盖索引。
**覆盖索引:**就是包含了所有查询字段(where,select,ordery by,group by包含的字段)的索引
覆盖索引的好处:
· 避免Innodb表进行索引的二次查询
Innodb是以聚集索引的顺序来存储的,对于Innodb来说,二级索引在叶子节点中所保存的是行的主键信息,
如果是用二级索引查询数据的话,在查找到相应的键值后,还要通过主键进行二次查询才能获取我们真实所需要的数据。而在覆盖索引中,二级索引的键值中可以获取所有的数据,避免了对主键的二次查询 ,减少了IO操作,提升了查询效率。
· 可以把随机IO变成顺序IO加快查询效率
由于覆盖索引是按键值的顺序存储的,对于IO密集型的范围查找来说,对比随机从磁盘读取每一行的数据IO要少的多,因此利用覆盖索引在访问时也可以把磁盘的随机读取的IO转变成索引查找的顺序IO。
九、索引SET规范
=========
尽量避免使用外键约束
· 不建议使用外键约束(foreign key),但一定要在表与表之间的关联键上建立索引;
· 外键可用于保证数据的参照完整性,但建议在业务端实现;
· 外键会影响父表和子表的写操作从而降低性能。
十、数据库SQL开发规范
============
1、建议使用预编译语句进行数据库操作
预编译语句可以重复使用这些计划,减少SQL编译所需要的时间,还可以解决动态SQL所带来的SQL注入的问题 只传参数,比传递SQL语句更高效 相同语句可以一次解析,多次使用,提高处理效率。
2、避免数据类型的隐式转换
隐式转换会导致索引失效。如:select name,phone from customer where id = ‘111’;
3、充分利用表上已经存在的索引
· 避免使用双%号的查询条件。
如a like ‘%123%’,(如果无前置%,只有后置%,是可以用到列上的索引的)
· 一个SQL只能利用到复合索引中的一列进行范围查询
如:有 a,b,c列的联合索引,在查询条件中有a列的范围查询,则在b,c列上的索引将不会被用到,在定义联合索引时,如果a列要用到范围查找的话,就要把a列放到联合索引的右侧。
使用left join或 not exists来优化not in操作
因为not in 也通常会使用索引失效。
4、数据库设计时,应该要对以后扩展进行考虑
5、程序连接不同的数据库使用不同的账号,进制跨库查询
· 为数据库迁移和分库分表留出余地
· 降低业务耦合度
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)
关于这份笔记,为了不影响大家的阅读体验,我只能在文章中展示部分的章节内容和核心截图
afka的生产者
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
.(img-V5j64kx5-1713526002251)]
afka的生产者
[外链图片转存中…(img-rGjbHmIg-1713526002251)]
[外链图片转存中…(img-XVoUwjEr-1713526002251)]
[外链图片转存中…(img-Hbbel1Dd-1713526002252)]
[外链图片转存中…(img-SYNTuH1X-1713526002252)]
[外链图片转存中…(img-iTiELVP4-1713526002252)]
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。