当前位置:   article > 正文

Spark概述:基本架构及原理_简述spark大数据平台的基本构架和工作原理

简述spark大数据平台的基本构架和工作原理


一、什么是Spark?

Spark 是一个用来实现快速而通用的集群计算的平台。在速度方面,Spark 扩展了广泛使用的MapReduce 计算模型,而且高效地支持更多计算模式,包括交互式查询和流处理。Spark 的一个主要特点就是能够在内存中进行计算,因而更快。不过即使是必须在磁盘上进行的复杂计算,Spark 依然比MapReduce 更加高效。

总的来说,Spark 适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理、迭代算法、交互式查询、流处理。通过在一个统一的框架下支持这些不同的计算,Spark使我们可以简单而低耗地把各种处理流程整合在一起。而这样的组合,在实际的数据分析过程中是很有意义的。不仅如此,Spark 的这种特性还大大减轻了原先需要对各种平台分别管理的负担。

二、四大特性

1.高效性

运行速度提高100倍。

Apache Spark使用最先进的DAG调度程序,查询优化程序和物理执行引擎,实现批量和流式数据的高性能。

2.易用性

Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。

3.通用性

Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本。

4.兼容性

Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。Spark也可以不依赖于第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人都可以非常容易地部署和使用Spark。此外,Spark还提供了在EC2上部署Standalone的Spark集群的工具。

三、Spark与Hadoop的区别

  • 目的

Hadoop是一个分布式的数据基础设施,它是将庞大的数据集分派到由若干台计算机组成的集群中的多个节点进行存储。Spark是一个专门用来对那些分布式存储的大数据进行处理的工具,spark本身并不会进行分布式数据的存储。

  • 两者的部署

Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,MapReduce为海量的数据提供了计算。所以使用Hadoop则可以抛开spark,而直接使用Hadoop自身的mapreduce完成数据的处理。Spark是不提供文件管理系统的,但也不是只能依附在Hadoop上,它同样可以选择其他的基于云的数据系统平台,但spark默认的一般选择的还是hadoop。

  • 数据处理速度

MapReduce是分步对数据进行处理的:从集群中读取数据,进行一次处理,将结果写到集群,从集群中读取更新后的数据,进行下一次的处理,将结果写到集群…。
Spark拥有Hadoop、 MapReduce所具有能更好地适用于数据挖掘与机器学习等需要迭代的的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

  • 数据安全恢复

Hadoop每次处理后的数据是写入到磁盘上,所以其天生就能很有弹性的对系统错误进行处理;spark的数据对象存储在分布于数据集群中的叫做弹性分布式数据集中,这些数据对象既可以放在内存,也可以放在磁盘,所以spark同样可以完成数据的安全恢复。

四、生态圈

Spark 项目包含多个紧密集成的组件。Spark 的核心是一个对由很多计算任务组成的、运行在多个工作机器或者是一个计算集群上的应用进行调度、分发以及监控的计算引擎。

通常当需要处理的数据量超过了单机尺度(比如我们的计算机有4GB的内存,而我们需要处理100GB以上的数据)这时我们可以选择spark集群进行计算,有时我们可能需要处理的数据量并不大,但是计算很复杂,需要大量的时间,这时我们也可以选择利用spark集群强大的计算资源,并行化地计算。

其生态圈如下:

Spark生态圈

主要组件:

  • Spark Core

实现了Spark 的基本功能,包含任务调度、内存管理、错误恢复、与存储系统交互等模块。Spark Core 中还包含了对弹性分布式数据集(resilient distributed dataset,简称RDD)的API 定义。RDD 表示分布在多个计算节点上可以并行操作的元素集合,是Spark 主要的编程抽象。Spark Core 提供了创建和操作这些集合的多个API。

  • Spark SQL

提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。

  • Spark Streaming

对实时数据进行流式计算的组件。Spark Streaming提供了用来操作数据流的API,并且与Spark Core中的RDD API高度对应,允许程序能够像普通RDD一样处理实时数据。

  • MLlib

一个常用机器学习算法库,算法被实现为对RDD的Spark操作。这个库包含可扩展的学习算法,比如分类、回归等需要对大量数据集进行迭代的操作,还提供了模型评估、数据导入等额外的支持功能和一些更底层的机器学习原语。

  • GraphX

控制图、并行图操作和计算的一组算法和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作。

五、基本架构

每个Spark应用都由一个驱动器程序(Drive Program)来发起集群上的各种并行操作。驱动器程序包含应用的main函数,驱动器负责创建SparkContext,SparkContext可以与不同种类的集群资源管理器(Cluster Manager),例如Hadoop YARN,Mesos进行通信,获取到集群进行所需的资源后,SparkContext将得到集群中工作节点(Worker Node)上对应的Executor(不同的Spark程序有不同的Executor,他们之间是相互独立的进程,Executor为应用程序提供分布式计算以及数据存储功能),之后SparkContext将应用程序代码发送到各Executor,最后将任务(Task)分配给executors执行。

在这里插入图片描述
在这里插入图片描述

架构中的基本组件:

  • Application:Spark应用程序

指的是用户编写的Spark应用程序,包含了Driver功能代码和分布在集群中多个节点上运行的Executor代码。

  • SparkContext

Spark应用程序的入口,负责调度各个运算资源,协调各个Worker Node上的Executor。

  • Driver:驱动程序

Spark中的Driver即运行上述Application的Main()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备Spark应用程序的运行环境。在Spark中由SparkContext负责和ClusterManager通信,进行资源的申请、任务的分配和监控等;当Executor部分运行完毕后,Driver负责将SparkContext关闭。

  • Cluster Manager:集群管理器

指的是在集群上获取资源的外部服务,常用的有:Standalone,Spark原生的资源管理器,由Master负责资源的分配;Haddop Yarn,由Yarn中的ResearchManager负责资源的分配;Messos,由Messos中的Messos Master负责资源管理。

  • Executor:执行器

Application运行在Worker节点上的一个进程,该进程负责运行Task,并且负责将数据存在内存或者磁盘上,每个Application都有各自独立的一批Executor。

  • Worker:计算节点

集群中任何可以运行Application代码的节点,从节点,负责控制计算节点,启动Executor或Driver。在Standalone模式中指的就是通过Slave文件配置的Worker节点,在Spark on Yarn模式中指的就是NodeManager节点,在Spark on Messos模式中指的就是Messos Slave节点。

  • RDD:弹性分布式数据集

Resillient Distributed Dataset,Spark的基本计算单元,可以通过一系列算子进行操作(主要有Transformation和Action操作)。一个RDD可以认为是Spark在执行分布式计算时的一批相同来源、相同结构、相同用途的数据集,这个数据集可能被切割成多个分区,分布在不同的机器上,无论如何,这个数据集被称为一个RDD。在编程时,RDD对象就对应了这个数据集,并且RDD对象被当作一个数据操作的基本单位。比如,对某个RDD对象进行map操作,其实就相当于将数据集中的每个分区的每一条数据进行了map映射。

  • DAG:有向无环图

Directed Acycle graph,反应RDD之间的依赖关系。RDD是不可变的,一个RDD经过某种操作后,会生成一个新的RDD。这样说来,一个Application中的程序,其内容基本上都是对各种RDD的操作,从源RDD,经过各种计算,产生中间RDD,最后生成你想要的RDD并输出。这个过程中的各个RDD,会构成一个有向无环图。

  • DAGScheduler:有向无环图调度器

基于DAG划分Stage并以TaskSet的形势提交Stage给TaskScheduler;负责将作业拆分成不同阶段的具有依赖关系的多批任务;最重要的任务之一就是:计算作业和任务的依赖关系,制定调度逻辑。在SparkContext初始化的过程中被实例化,一个SparkContext对应创建一个DAGScheduler。

  • TaskScheduler:任务调度器

将Taskset提交给Worker(集群)运行并回报结果;负责每个具体任务的实际物理调度。

  • Job:作业

由一个或多个调度阶段所组成的一次计算作业;包含多个Task组成的并行计算,往往由Spark Action催生,一个JOB包含多个RDD及作用于相应RDD上的各种Operation。

  • Stage:调度阶段

一个任务集对应的调度阶段;每个Job会被拆分很多组Task,每组任务被称为Stage,也可称TaskSet,一个作业分为多个阶段;Stage分成两种类型ShuffleMapStage、ResultStage。

  • TaskSet:任务集

由一组关联的,但相互之间没有Shuffle依赖关系的任务所组成的任务集。
1)一个Stage创建一个TaskSet;
2)为Stage的每个Rdd分区创建一个Task,多个Task封装成TaskSet

  • Task:任务

被送到某个Executor上的工作任务;单个分区数据集上的最小处理流程单元。

  • 窄依赖

父RDD每一个分区最多被一个子RDD的分区所用,表现为一个父RDD的分区对应于一个子RDD的分区,或两个父RDD的分区对应于一个子RDD的分区。
窄依赖是指前一个rdd计算能出一个唯一的rdd,比如map或者filter等。

  • 宽依赖

父RDD的每个分区都可能被多个子RDD分区所使用,子RDD分区通常对应所有的父RDD分区。
宽依赖则是指多个rdd生成一个或者多个rdd的操作,比如groupbykey reducebykey等,这种宽依赖通常会进行shuffle。

  • SparkEnv

线程级别的上下文,存储运行时的重要组件的引用。

六、运行流程

1、整体流程

在这里插入图片描述

  1. 构建Spark Application的运行环境,启动SparkContext
  2. SparkContext向资源管理器(可以是Standalone,Mesos,Yarn)注册,并申请运行Executor资源
  3. 资源管理器分配并启动Executor
  4. Executor发送心跳至资源管理器
  5. SparkContext构建成DAG图
  6. 将DAG图分解成Stage(TaskSet)
  7. 将Stage(TaskSet)发送给Task Scheduler
  8. Executor向SparkContext申请Task
  9. Task Scheduler将Task发放给Executor运行
  10. 同时SparkContext将应用程序代码发放给Executor
  11. Task在Executor上运行,把结果反馈给TaskScheduler,一层层反馈上去
  12. 最后释放所有资源

2、四种运行模式

  • local:主要用于开发调试Spark应用程序
  • Standlone:利用Spark自带的资源管理与调度器运行Spark集群,采用Master/Slave结构,为解决单点故障,可以采用Zookeeper实现高可靠(High Availability,HA)
  • Apache Mesos:运行在著名的Mesos资源管理框架基础之上,该集群运行模式将资源管理管理交给Mesos,Spark只负责运行任务调度和计算
  • Hadoop YARN:集群运行在Yarn资源管理器上,资源管理交给YARN,Spark只负责进行任务调度和计算。Spark on YARN模式根据Driver在集群中的位置分为两种模式:一种是YARN-Client,另一种是YARN-Cluster。

七、运行架构特点

1.Executor进程专属

每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行tasks。这种Application隔离机制是有优势的,无论是从调度角度看(每个Driver调度他自己的任务),还是从运行角度看(来自不同Application的Task运行在不同JVM中),当然这样意味着Spark Application不能跨应用程序共享数据,除非将数据写入外部存储系统。

2.支持多种资源管理器

Spark与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了,Spark支持资源管理器包含: Standalone、On Mesos、On YARN、Or On EC2。

3.Job提交就近原则

提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack(机架)里,因为Spark Application运行过程中SparkContext和Executor之间有大量的信息交换;如果想在远程集群中运行,最好使用RPC将SparkContext提交给集群,不要远离Worker运行SparkContext。

4.移动程序而非移动数据的原则执行

Task采用了数据本地性和推测执行的优化机制。关键方法:taskIdToLocations、getPreferedLocations。

八、内存管理

在这里插入图片描述
Executor的内存主要分为三块:

  • 第一块是让task执行我们自己编写的代码时使用,默认是占Executor总内存的20%;

  • 第二块是让task通过shuffle过程拉取了上一个stage的task的输出后,进行聚合等操作时使用,默认也是占Executor总内存的20%;

  • 第三块是让RDD持久化时使用,默认占Executor总内存的60%。

每个task以及每个executor占用的内存需要分析一下。每个task处理一个partiiton的数据,分片太少,会造成内存不够。

参考:
http://www.cnblogs.com/tgzhu/p/5818374.html
http://www.raincent.com/content-85-11052-1.html
https://segmentfault.com/a/1190000009963890#articleHeader12
https://www.cnblogs.com/liuliliuli2017/p/6809094.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小惠珠哦/article/detail/772354
推荐阅读
相关标签
  

闽ICP备14008679号