赞
踩
知识图谱又可以从数据角度和技术角度来看。以数据方面为例,它就是一个语义的知识库,里面的组成单位是“实体—属性—关系”这样的三元组,各个组聚合在一起 就构成了复杂的网状知识结构。比如“刘德华”周围有很多关系:他的别名、身高、生日、妻子以及电影作品,他演的《无间道》又包含了相关的导演、演员以及制 片地区香港等。所以知识图谱能非常直观的表达对象与对象之间的关系。世间万物是一个错综复杂的关系网,但是无论形式上多么复杂,其实本质上都是简单的三元 组。
以技术方面为例,知识图谱是从数据、情报到知识,最后再到智慧的过程。首先是分布式数据采集,这里面既会涉及到外部海量在线数据(像新闻,公司披露等信 息),也会有内部业务数据。并且需要把采集来的数据像刚从果园采回的鲜果一样做彻底的清洗,然后输出干净的基础数据。下一步需要对其做语义处理,因为新闻 本身可能也含有广告,所以需要通过自然语言处理识别新闻中到底谈到哪个公司,或者哪位高管,又或者提到公司的什么大事,比如中了什么标,可能会对业绩有较 大的影响。做完语义处理之后,输出结构化标准数据,然后将行业专家的知识融合进来去建模,从而构建出各个行业的知识库。
在这个基础上,就可以做上层决策支 持系统,通过更加简易的人机交互来访问这些底层的知识图谱。比如你向同花顺i问财 提问“同花顺可以买吗?”,它首先需要理解你要问的是什么:意图是同花顺这个公司,实体是怎么样,要不要买;然后把它转化到庞大的底层知识图谱中去做搜 索,最后返回给你想要的结果,比如同类型的事件当时同花顺股票涨跌的概率等。
AI产品经理与信息类产品经理思路不同之处:比 如智能
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。