赞
踩
基因组学(genomics)是对生物体所有基因进行集体表征、定量研究及不同基因组比较研究的一门交叉生物学学科,基因组学的目的是对一个生物体所有基因进行集体表征和量化,并研究它们之间的相互关系及对生物体的影响 。机器学习已经被广泛应用于基因组学研究中,利用已知的训练集对数据的类型和应答结果进行预测,深度学习,可以进行预测和降维分析。深度学习模型的能力更强且更灵活,在适当的训练数据下,深度学习可以在较少人工参与的情况下自动学习特征和规律。调控基因组学,变异检测,致病性评分成功应用。深度学习可以提高基因组数据的可解释性,并将基因组数据转化为可操作的临床信息。改善疾病诊断方案,了解应该使用哪些药物和给谁服用药物,最大限度的减少副作用,最大限度的提高疗效,所有这些都要求从基因组原始数据开始进行分析。这将是一项非常耗时的过程,因为涉及到的变量太多了,而深度学习恰恰能帮助缩短这一过程,近两年国内外顶尖课题组MIT、Harvard University、UPenn、清华大学、复旦大学等都在从事深度学习基因组学的研究,这一研究成果更是多次发表在Nature Reviews Genetics、Nature Methods、Science Advances、Cancer Cell、Nature Biotechnology 等知名国际顶刊上,为我们发表顶刊鉴定了基础。
“单细胞多组学技术”和“空间转录组技术”先后在2019年和2020年被Nature Methods评为年度技术方法。时间和空间维度多维研究技术结合,将以全新研究思路出发,既能够获得单个细胞间异质性,又能获得细胞在组织空间上的结构位置信息,发现更多未知且精细化结果。总而言之,单细胞测序+空间转录组测序:优势互补,同时获得细胞类型群体,以及基因表达和细胞的空间位置信息。
空间转录组能够
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。