赞
踩
随机森林是一种一种分类算法,属于集成学习中的Bagging算法,即引导聚合类算法,由于不专注于解决困难样本,所以模型的performance会受到限制。在学习随机森林算法之前,首先要弄懂三个概念:决策树;集成学习(Ensemble Learning)[多分类系统];自主采样法(Boostrap Sampling)。
随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。随机森林属于机器学习的一大分支——集成学习(EnsembleLearning)方法。随机森林具有对于很多种资料,可以产生高准确度的分类器;可以处理大量的输入变数;可以在决定类别时,评估变数的重要性;可以在内部对于一般化后的误差产生不偏差的估计;对于不平衡的分类资料集来说,可以平衡误差等优点。
%%%%%%%%<
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。