赞
踩
目录
- import numpy as np
- import cv2
-
- img_mat = cv2.imread("dog.jpg")
- # 沿着X轴对称 行序列
- img1 = img_mat[::-1, :, :] # 行索引区间,列索引区间,通道区间
- cv2.imshow("dog", img_mat)
- cv2.imshow("X", img1)
- cv2.waitKey(0)
- cv2.destroyAllwindows()
- import numpy as np
- import cv2
-
- img_mat = cv2.imread("dog.jpg")
- # 沿着y轴对称 列序列
- img2 = img_mat[:, ::-1, :] # 行索引区间,列索引区间,通道区间
- cv2.imshow("dog", img_mat)
- cv2.imshow("Y", img2)
- cv2.waitKey(0)
- cv2.destroyAllwindows()
- import numpy as np
- import cv2
-
- img_mat = cv2.imread("dog.jpg")
- # 沿着原点对称 行、列序列
- img3 = img_mat[::-1, ::-1] # 行索引区间,列索引区间,通道区间
- cv2.imshow("dog", img_mat)
- cv2.imshow("0.0", img3)
- cv2.waitKey(0)
- cv2.destroyAllwindows()
- import numpy as np
- import cv2
-
- img_mat = cv2.imread("dog.jpg")
- # 明亮
- img4 = np.clip(img_mat * 1.5, a_min=0., a_max=255.).astype(np.uint8)
- cv2.imshow("dog", img_mat)
- cv2.imshow("light", img4)
- cv2.waitKey(0)
- cv2.destroyAllwindows()
- import numpy as np
- import cv2
-
- img_mat = cv2.imread("dog.jpg")
- # 暗
- img4 = (img_mat * 0.5).astype(np.uint8)
- cv2.imshow("dog", img_mat)
- cv2.imshow("black", img4)
- cv2.waitKey(0)
- cv2.destroyAllwindows()
- import numpy as np
- import cv2
-
- img_mat = cv2.imread("dog.jpg")
- # 垂直裁剪
- height = img_mat.shape[0]
- width = img_mat.shape[1]
- img5 = img_mat[int(height / 2)::, :, :]
- cv2.imshow("dog", img_mat)
- cv2.imshow("vertical cut", img5)
- cv2.waitKey(0)
- cv2.destroyAllwindows()
- import numpy as np
- import cv2
-
- img_mat = cv2.imread("dog.jpg")
- # 垂直裁剪
- height = img_mat.shape[0]
- width = img_mat.shape[1]
- img5 = img_mat[:, int(width/2)::, :]
- cv2.imshow("dog", img_mat)
- cv2.imshow("vertical cut", img5)
- cv2.waitKey(0)
- cv2.destroyAllwindows()
- import numpy as np
- import cv2
-
- img_mat = cv2.imread("dog.jpg")
- # 左上方点(50,0) width:250 height:100
- img6 = img_mat[0:100, 50:50 + 250]
- cv2.imshow("dog", img_mat)
- cv2.imshow("vertical cut", img6)
- cv2.waitKey(0)
- cv2.destroyAllwindows()
- import numpy as np
- import cv2
-
- img_mat = cv2.imread("dog.jpg")
- # 高度方向每隔一行取像素点
- img8 = img_mat[::2]
- cv2.imshow("dog", img_mat)
- cv2.imshow("slice height", img8)
- cv2.waitKey(0)
- cv2.destroyAllwindows()
- import numpy as np
- import cv2
-
- img_mat = cv2.imread("dog.jpg")
- # 宽度方向每隔一列取像素点
- img8 = img_mat[:, ::2]
- cv2.imshow("dog", img_mat)
- cv2.imshow("slice weight", img8)
- cv2.waitKey(0)
- cv2.destroyAllwindows()
- import numpy as np
- import cv2
-
- img_mat = cv2.imread("dog.jpg")
- # 缩略图
- img8 = img_mat[::2, ::2]
- cv2.imshow("dog", img_mat)
- cv2.imshow("slice img", img8)
- cv2.waitKey(0)
- cv2.destroyAllwindows()
- import numpy as np
- import cv2
-
- img_mat = cv2.imread("dog.jpg")
- # 灰度处理:加权求和 BGR
- # gray = r*0.299 + g*0.587 + b*0.114 加权求和
- img8 = img_mat[:, :, 2] * 0.299 + img_mat[:, :, 1] * 0.587 + img_mat[:, :, 0] * 0.114
- img8 = img8.astype(np.uint8)
- print(img8)
- cv2.imshow("dog", img_mat)
- cv2.imshow("gray img", img8)
- cv2.waitKey(0)
- cv2.destroyAllwindows()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。