当前位置:   article > 正文

VGG16远程服务器训练CIFAR10_vgg16要用服务器跑吗

vgg16要用服务器跑吗

由于方向原因一直没有仔细研究过神经网络,终于抽出两天肝出来了。
1、pychrm连接远程服务器
2、手写程序
3、配置GPU训练
4、运行状态图

import torch.cuda
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

device = torch.device("cuda:1")
train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集长度为: {}".format(train_data_size))
print("测试数据集长度为: {}".format(test_data_size))
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


class module(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10))

    def forward(self, x):
        x = self.model(x)
        return x


daqiu = module()
daqiu = daqiu.to(device)
loss_fn = nn.CrossEntropyLoss()
learning_rate = 0.01
optimizer = torch.optim.SGD(daqiu.parameters(), lr=learning_rate)
total_train_step = 0
total_test_step = 0
epoch = 10
writer = SummaryWriter("logs_train_GPU04")
for i in range(epoch):
    print("-------第{}轮训练开始-------".format(i + 1))
    daqiu.train()
    for data in train_dataloader:
        imgs, targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs = daqiu(imgs)
        loss = loss_fn(outputs, targets)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数: {}, Loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)
    daqiu.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = daqiu(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
    print("整体测试集的Loss: {}".format(total_test_loss))
    print("整体测试集的正确率: {}".format(total_accuracy / test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
    total_test_step = total_test_step + 1
writer.close()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小桥流水78/article/detail/957555
推荐阅读
  

闽ICP备14008679号