当前位置:   article > 正文

BERT预训练_训练bert编码器

训练bert编码器

一、动机

1、在NLP中的迁移学习中,使用预训练好的模型抽取词、句子的特征,不更新预训练好的模型,而是在需要构建新的网络来抓取新任务需要的信息,也就是最后面加上一个MLP做分类;

2、由于基于微调的NLP模型,也想要一个类似的东西,使预训练的模型抽取了足够多的信息,新任务只需要一个简单的输出层。

二、BERT架构

1、是只有编码器的transform,在大规模数据上训练大于3亿,其中有两个版本:

2、对输入的修改

(1)每个样本是一个句子对

(2)加入了额外的片段嵌入:分隔词元“<sep>”、特殊类别词元“<cls>”

(3)位置编码可以学习

3、训练任务

(1)带掩码的语言模型

        在这个预训练任务中,将随机选择15%的词元作为预测的掩蔽词元,用一个特殊的“<mask>”替换输入序列中的词元。

        人造特殊词元“<mask>”不会出现在微调中。为了避免预训练和微调之间的这种不匹配,如果为预测而屏蔽词元(例如,在“this movie is great”中选择掩蔽和预测“great”),则在输入中将其替换为:

(2)二元分类任务——下一句预测

        在为预训练生成句子对时,有一半的时间它们确实是标签为“真”的连续句子;在另一半的时间里,第二个句子是从语料库中随机抽取的,标记为“假”。

三、总结

1、word2vec和GloVe等词嵌入模型与上下文无关。它们将相同的预训练向量赋给同一个词,而不考虑词的上下文(如果有的话)。它们很难处理好自然语言中的一词多义或复杂语义。

2、对于上下文敏感的词表示,如ELMo和GPT,词的表示依赖于它们的上下文。

3、ELMo对上下文进行双向编码,但使用特定于任务的架构(然而,为每个自然语言处理任务设计一个特定的体系架构实际上并不容易);而GPT是任务无关的,但是从左到右编码上下文。

4、BERT结合了这两个方面的优点:它对上下文进行双向编码,并且需要对大量自然语言处理任务进行最小的架构更改。

5、BERT输入序列的嵌入是词元嵌入、片段嵌入和位置嵌入的和。

6、预训练包括两个任务:掩蔽语言模型和下一句预测。前者能够编码双向上下文来表示单词,而后者则显式地建模文本对之间的逻辑关系。

7、BERT针对微调设计

四、BERT代码

1、获取输入序列的词元及其片段索引

#@save
def get_tokens_and_segments(tokens_a, tokens_b=None):
    """获取输入序列的词元及其片段索引"""
    tokens = ['<cls>'] + tokens_a + ['<sep>']
    # 0和1分别标记片段A和B
    segments = [0] * (len(tokens_a) + 2)
    if tokens_b is not None:
        tokens += tokens_b + ['<sep>']
        segments += [1] * (len(tokens_b) + 1)
    return tokens, segments

2、BERT编码器

#@save
class BERTEncoder(nn.Module):
    """BERT编码器"""
    def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input,
                 ffn_num_hiddens, num_heads, num_layers, dropout,
                 max_len=1000, key_size=768, query_size=768, value_size=768,
                 **kwargs):
        super(BERTEncoder, self).__init__(**kwargs)
        self.token_embedding = nn.Embedding(vocab_size, num_hiddens)
        #用于区分输入序列中的不同段(segments),在BERT中,输入序列通常是由两个句子拼接而成,并且需要区分它们。每个token都会被分配一个段ID(通常是0或1),表示它属于哪个句子。
        self.segment_embedding = nn.Embedding(2, num_hiddens)
        self.blks = nn.Sequential()
        for i in range(num_layers):
            self.blks.add_module(f"{i}", d2l.EncoderBlock(
                key_size, query_size, value_size, num_hiddens, norm_shape,
                ffn_num_input, ffn_num_hiddens, num_heads, dropout, True))
        # 在BERT中,位置嵌入是可学习的,因此我们创建一个足够长的位置嵌入参数
        #每个位置都需要一个唯一的编码,因此有 max_len 个位置编码;num_hiddens 表示每个位置编码向量的维度。这个维度与输入嵌入向量的维度相同,以便位置编码可以直接添加到输入嵌入向量中。
        self.pos_embedding = nn.Parameter(torch.randn(1, max_len,
                                                      num_hiddens))

    def forward(self, tokens, segments, valid_lens):
        # 在以下代码段中,X的形状保持不变:(批量大小,最大序列长度,num_hiddens)
        #包含结合token和段信息的嵌入向量,为输入到接下来的Transformer编码层中的进一步处理。
        X = self.token_embedding(tokens) + self.segment_embedding(segments)
        X = X + self.pos_embedding.data[:, :X.shape[1], :]
        for blk in self.blks:
            X = blk(X, valid_lens)
        return X

3、BERT的掩蔽语言模型任务

#@save
class MaskLM(nn.Module):
    """BERT的掩蔽语言模型任务"""
    def __init__(self, vocab_size, num_hiddens, num_inputs=768, **kwargs):
        super(MaskLM, self).__init__(**kwargs)
        #MLP将输入的特征转换为词汇表大小的输出。
        self.mlp = nn.Sequential(nn.Linear(num_inputs, num_hiddens),
                                 nn.ReLU(),
                                 nn.LayerNorm(num_hiddens),
                                 nn.Linear(num_hiddens, vocab_size))

    def forward(self, X, pred_positions):
        #获取每个批次中预测位置的数量
        num_pred_positions = pred_positions.shape[1]
        #将预测位置展平成一维
        pred_positions = pred_positions.reshape(-1)
        batch_size = X.shape[0]
        batch_idx = torch.arange(0, batch_size)
        # 假设batch_size=2,num_pred_positions=3
        # 那么batch_idx是np.array([0,0,0,1,1,1])
        #将批次索引重复 num_pred_positions 次。
        batch_idx = torch.repeat_interleave(batch_idx, num_pred_positions)
        masked_X = X[batch_idx, pred_positions]
        masked_X = masked_X.reshape((batch_size, num_pred_positions, -1))
        mlm_Y_hat = self.mlp(masked_X)
        return mlm_Y_hat

4、 下一句预测

#@save
class NextSentencePred(nn.Module):
    """BERT的下一句预测任务"""
    def __init__(self, num_inputs, **kwargs):
        super(NextSentencePred, self).__init__(**kwargs)
        #是或者不是
        self.output = nn.Linear(num_inputs, 2)

    def forward(self, X):
        # X的形状:(batchsize,num_hiddens)
        return self.output(X)

5、整合

#@save
class BERTModel(nn.Module):
    """BERT模型"""
    def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input,
                 ffn_num_hiddens, num_heads, num_layers, dropout,
                 max_len=1000, key_size=768, query_size=768, value_size=768,
                 hid_in_features=768, mlm_in_features=768,
                 nsp_in_features=768):
        super(BERTModel, self).__init__()
        self.encoder = BERTEncoder(vocab_size, num_hiddens, norm_shape,
                    ffn_num_input, ffn_num_hiddens, num_heads, num_layers,
                    dropout, max_len=max_len, key_size=key_size,
                    query_size=query_size, value_size=value_size)
        self.hidden = nn.Sequential(nn.Linear(hid_in_features, num_hiddens),
                                    nn.Tanh())
        self.mlm = MaskLM(vocab_size, num_hiddens, mlm_in_features)
        self.nsp = NextSentencePred(nsp_in_features)

    def forward(self, tokens, segments, valid_lens=None,
                pred_positions=None):
        encoded_X = self.encoder(tokens, segments, valid_lens)
        if pred_positions is not None:
            mlm_Y_hat = self.mlm(encoded_X, pred_positions)
        else:
            mlm_Y_hat = None
        # 用于下一句预测的多层感知机分类器的隐藏层,0是“<cls>”标记的索引
        nsp_Y_hat = self.nsp(self.hidden(encoded_X[:, 0, :]))
        return encoded_X, mlm_Y_hat, nsp_Y_hat

五、预训练BERT的数据集

        以理想的格式生成数据集,以便于两个预训练任务:遮蔽语言模型和下一句预测

1、为预训练任务定义辅助函数

(1)下载数据集

#@save
d2l.DATA_HUB['wikitext-2'] = (
    'https://s3.amazonaws.com/research.metamind.io/wikitext/'
    'wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe')

#@save
def _read_wiki(data_dir):
    file_name = os.path.join(data_dir, 'wiki.train.tokens')
    with open(file_name, 'r') as f:
        lines = f.readlines()
    # 大写字母转换为小写字母
    paragraphs = [line.strip().lower().split(' . ')
                  for line in lines if len(line.split(' . ')) >= 2]
    random.shuffle(paragraphs)
    return paragraphs

(2)生成下一句预测任务的数据

#@save
def _get_next_sentence(sentence, next_sentence, paragraphs):
    if random.random() < 0.5:
        is_next = True
    else:
        # paragraphs是三重列表的嵌套
        next_sentence = random.choice(random.choice(paragraphs))
        is_next = False
    return sentence, next_sentence, is_next
#@save
def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len):
    nsp_data_from_paragraph = []
    for i in range(len(paragraph) - 1):
        tokens_a, tokens_b, is_next = _get_next_sentence(
            paragraph[i], paragraph[i + 1], paragraphs)
        # 考虑1个'<cls>'词元和2个'<sep>'词元
        if len(tokens_a) + len(tokens_b) + 3 > max_len:
            continue
        tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
        nsp_data_from_paragraph.append((tokens, segments, is_next))
    return nsp_data_from_paragraph

(3)生成遮蔽语言模型任务的数据

#@save
#candidate_pred_positions:候选预测位置列表;num_mlm_preds:需要进行掩蔽或替换的词元数量;vocab:词汇表对象,提供词元到索引的映射。
def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds,vocab):
    # 为遮蔽语言模型的输入创建新的词元副本,其中输入可能包含替换的“<mask>”或随机词元
    mlm_input_tokens = [token for token in tokens]
    pred_positions_and_labels = []
    # 打乱后用于在遮蔽语言模型任务中获取15%的随机词元进行预测
    random.shuffle(candidate_pred_positions)
    for mlm_pred_position in candidate_pred_positions:
        if len(pred_positions_and_labels) >= num_mlm_preds:
            break
        masked_token = None
        # 80%的时间:将词替换为“<mask>”词元
        if random.random() < 0.8:
            masked_token = '<mask>'
        else:
            # 10%的时间:保持词不变
            if random.random() < 0.5:
                masked_token = tokens[mlm_pred_position]
            # 10%的时间:用随机词替换该词
            else:
                masked_token = random.choice(vocab.idx_to_token)
        mlm_input_tokens[mlm_pred_position] = masked_token
        pred_positions_and_labels.append(
            (mlm_pred_position, tokens[mlm_pred_position]))
    #返回更新后的词元列表 mlm_input_tokens 和记录掩蔽位置及标签的列表 pred_positions_and_labels。
    return mlm_input_tokens, pred_positions_and_labels

(4)将BERT输入序列(tokens)作为输入,并返回输入词元的索引、发生预测的词元索引以及这些预测的标签索引。

#@save
def _get_mlm_data_from_tokens(tokens, vocab):
    candidate_pred_positions = []
    # tokens是一个字符串列表
    for i, token in enumerate(tokens):
        # 在遮蔽语言模型任务中不会预测特殊词元
        if token in ['<cls>', '<sep>']:
            continue
        candidate_pred_positions.append(i)
    # 遮蔽语言模型任务中预测15%的随机词元,计算需要掩蔽的词元数量
    num_mlm_preds = max(1, round(len(tokens) * 0.15))
    mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens(
        tokens, candidate_pred_positions, num_mlm_preds, vocab)
    #按照位置进行排序,以确保掩蔽位置和标签按顺序排列。
    pred_positions_and_labels = sorted(pred_positions_and_labels,
                                       key=lambda x: x[0])
    #提取掩蔽位置 pred_positions 和对应的原始标签 mlm_pred_labels。
    pred_positions = [v[0] for v in pred_positions_and_labels]
    mlm_pred_labels = [v[1] for v in pred_positions_and_labels]
    return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels]

2、将文本转换为预训练数据集

#@save
def _pad_bert_inputs(examples, max_len, vocab):
    max_num_mlm_preds = round(max_len * 0.15)
    all_token_ids, all_segments, valid_lens,  = [], [], []
    all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], []
    nsp_labels = []
    for (token_ids, pred_positions, mlm_pred_label_ids, segments,is_next) in examples:
        #填充到 max_len 长度,用 <pad> 词元进行填充
        all_token_ids.append(torch.tensor(token_ids + [vocab['<pad>']] * (
            max_len - len(token_ids)), dtype=torch.long))
        all_segments.append(torch.tensor(segments + [0] * (
            max_len - len(segments)), dtype=torch.long))
        # valid_lens不包括'<pad>'的计数
        valid_lens.append(torch.tensor(len(token_ids), dtype=torch.float32))
        all_pred_positions.append(torch.tensor(pred_positions + [0] * (
            max_num_mlm_preds - len(pred_positions)), dtype=torch.long))
        # 填充MLM权重,预测位置对应权重为1.0,填充位置对应权重为0.0
        all_mlm_weights.append(
            torch.tensor([1.0] * len(mlm_pred_label_ids) + [0.0] * (
                max_num_mlm_preds - len(pred_positions)),
                dtype=torch.float32))
        #将 mlm_pred_label_ids 填充到 max_num_mlm_preds 长度,用0进行填充。
        all_mlm_labels.append(torch.tensor(mlm_pred_label_ids + [0] * (
            max_num_mlm_preds - len(mlm_pred_label_ids)), dtype=torch.long))
        nsp_labels.append(torch.tensor(is_next, dtype=torch.long))
    return (all_token_ids, all_segments, valid_lens, all_pred_positions,
            all_mlm_weights, all_mlm_labels, nsp_labels)

3、处理维基文本数据集

#@save
class _WikiTextDataset(torch.utils.data.Dataset):
    def __init__(self, paragraphs, max_len):
        # 输入paragraphs[i]是代表段落的句子字符串列表;
        # 而输出paragraphs[i]是代表段落的句子列表,其中每个句子都是词元列表
        #将每个段落的句子字符串进行词元化,转换为词元列表
        paragraphs = [d2l.tokenize(
            paragraph, token='word') for paragraph in paragraphs]
        #将所有段落中的句子合并为一个句子列表。
        sentences = [sentence for paragraph in paragraphs
                     for sentence in paragraph]
        self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=[
            '<pad>', '<mask>', '<cls>', '<sep>'])
        # 获取下一句子预测任务的数据
        examples = []
        for paragraph in paragraphs:
            examples.extend(_get_nsp_data_from_paragraph(
                paragraph, paragraphs, self.vocab, max_len))
        # 获取遮蔽语言模型任务的数据
        examples = [(_get_mlm_data_from_tokens(tokens, self.vocab)
                      + (segments, is_next))
                     for tokens, segments, is_next in examples]
        # 填充输入
        (self.all_token_ids, self.all_segments, self.valid_lens,
         self.all_pred_positions, self.all_mlm_weights,
         self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs(
            examples, max_len, self.vocab)

    #获取样本数据
    def __getitem__(self, idx):
        return (self.all_token_ids[idx], self.all_segments[idx],
                self.valid_lens[idx], self.all_pred_positions[idx],
                self.all_mlm_weights[idx], self.all_mlm_labels[idx],
                self.nsp_labels[idx])

    #获取数据集长度
    def __len__(self):
        return len(self.all_token_ids)

4、加载WikiText-2数据集

#@save
def load_data_wiki(batch_size, max_len):
    """加载WikiText-2数据集"""
    num_workers = d2l.get_dataloader_workers()
    data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
    paragraphs = _read_wiki(data_dir)
    train_set = _WikiTextDataset(paragraphs, max_len)
    train_iter = torch.utils.data.DataLoader(train_set, batch_size,
                                        shuffle=True, num_workers=num_workers)
    return train_iter, train_set.vocab

六、预训练BERT

1、定义了一个小的BERT,使用了2层、128个隐藏单元和2个自注意头

net = d2l.BERTModel(len(vocab), num_hiddens=128, norm_shape=[128],
                    ffn_num_input=128, ffn_num_hiddens=256, num_heads=2,
                    num_layers=2, dropout=0.2, key_size=128, query_size=128,
                    value_size=128, hid_in_features=128, mlm_in_features=128,
                    nsp_in_features=128)
devices = d2l.try_all_gpus()
loss = nn.CrossEntropyLoss()

2、计算遮蔽语言模型和下一句子预测任务的损失

#@save
def _get_batch_loss_bert(net, loss, vocab_size, tokens_X,
                         segments_X, valid_lens_x,
                         pred_positions_X, mlm_weights_X,
                         mlm_Y, nsp_y):
    # 前向传播
    _, mlm_Y_hat, nsp_Y_hat = net(tokens_X, segments_X,
                                  valid_lens_x.reshape(-1),
                                  pred_positions_X)
    # 计算遮蔽语言模型损失
    mlm_l = loss(mlm_Y_hat.reshape(-1, vocab_size), mlm_Y.reshape(-1)) *\
    mlm_weights_X.reshape(-1, 1)
    mlm_l = mlm_l.sum() / (mlm_weights_X.sum() + 1e-8)
    # 计算下一句子预测任务的损失
    nsp_l = loss(nsp_Y_hat, nsp_y)
    l = mlm_l + nsp_l
    return mlm_l, nsp_l, l

3、在WikiText-2(train_iter)数据集上预训练BERT(net

def train_bert(train_iter, net, loss, vocab_size, devices, num_steps):
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    trainer = torch.optim.Adam(net.parameters(), lr=0.01)
    step, timer = 0, d2l.Timer()
    animator = d2l.Animator(xlabel='step', ylabel='loss',
                            xlim=[1, num_steps], legend=['mlm', 'nsp'])
    # 遮蔽语言模型损失的和,下一句预测任务损失的和,句子对的数量,计数
    metric = d2l.Accumulator(4)
    num_steps_reached = False
    while step < num_steps and not num_steps_reached:
        for tokens_X, segments_X, valid_lens_x, pred_positions_X,\
            mlm_weights_X, mlm_Y, nsp_y in train_iter:
            tokens_X = tokens_X.to(devices[0])
            segments_X = segments_X.to(devices[0])
            valid_lens_x = valid_lens_x.to(devices[0])
            pred_positions_X = pred_positions_X.to(devices[0])
            mlm_weights_X = mlm_weights_X.to(devices[0])
            mlm_Y, nsp_y = mlm_Y.to(devices[0]), nsp_y.to(devices[0])
            trainer.zero_grad()
            timer.start()
            mlm_l, nsp_l, l = _get_batch_loss_bert(
                net, loss, vocab_size, tokens_X, segments_X, valid_lens_x,
                pred_positions_X, mlm_weights_X, mlm_Y, nsp_y)
            l.backward()
            trainer.step()
            metric.add(mlm_l, nsp_l, tokens_X.shape[0], 1)
            timer.stop()
            animator.add(step + 1,(metric[0] / metric[3], metric[1] / metric[3]))
            step += 1
            if step == num_steps:
                num_steps_reached = True
                break

    print(f'MLM loss {metric[0] / metric[3]:.3f}, '
          f'NSP loss {metric[1] / metric[3]:.3f}')
    print(f'{metric[2] / timer.sum():.1f} sentence pairs/sec on '
          f'{str(devices)}')

4、预训练BERT之后,我们可以用它来表示单个文本、文本对或其中的任何词元。

def get_bert_encoding(net, tokens_a, tokens_b=None):
    tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
    token_ids = torch.tensor(vocab[tokens], device=devices[0]).unsqueeze(0)
    segments = torch.tensor(segments, device=devices[0]).unsqueeze(0)
    valid_len = torch.tensor(len(tokens), device=devices[0]).unsqueeze(0)
    encoded_X, _, _ = net(token_ids, segments, valid_len)
    return encoded_X
tokens_a = ['a', 'crane', 'is', 'flying']
encoded_text = get_bert_encoding(net, tokens_a)
# 词元:'<cls>','a','crane','is','flying','<sep>'
#因为零是“<cls>”词元,encoded_text[:, 0, :]是整个输入语句的BERT表示。
#来自预训练BERT的整个句子对的编码结果
encoded_text_cls = encoded_text[:, 0, :]
encoded_text_crane = encoded_text[:, 2, :]
#打印出了该词元的BERT表示的前三个元素
encoded_text.shape, encoded_text_cls.shape, encoded_text_crane[0][:3]

输出(torch.Size([1, 6, 128]),------['cls','a', 'crane', 'is', 'flying','seq']

        torch.Size([1, 128]),------['cls']

        tensor([-0.5007, -1.0034, 0.8718], device='cuda:0', grad_fn=<SliceBackward0>))

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小桥流水78/article/detail/969337
推荐阅读
相关标签
  

闽ICP备14008679号