赞
踩
本文制作了一个三分类的网络来分类mnist数据集的0,1,2.并同时制作了一个力学模型,用来模拟这个三分类的过程,并用这个模型解释分类的原理。
上图可以用下列方程描述
只要ωx0,ωx1,ωx2,ωx012这四个数已知这个方程组是可以解的。
现在设计一个网络来计算ωx0
制作一个网络分类mnist 0和一张图片x,让左右两个网络实现参数共享,让x向1,0,0收敛,让mnist 0向0,1,0收敛
将这个网络简写成
d2(mnist 0, x)81-con(3*3)-49-30-3-(3*k) ,k∈(0,1)
具体进样顺序 |
| ||
δ=0.5 |
| ||
初始化权重 |
| ||
迭代次数 |
| ||
X | 1 | 判断是否达到收敛 | |
mnist 0-1 | 2 | 判断是否达到收敛 | |
梯度下降 |
| ||
X | 3 | 判断是否达到收敛 | |
mnist 0-2 | 4 | 判断是否达到收敛 | |
梯度下降 |
| ||
…… |
| ||
X | 9997 | 判断是否达到收敛 | |
mnist 0-4999 | 9998 | 判断是否达到收敛 | |
梯度下降 |
| ||
…… |
| ||
如果4999图片内没有达到收敛标准再次从头循环 | |||
X | 9999 | 判断是否达到收敛 | |
mnist 0-1 | 10000 | 判断是否达到收敛 | |
梯度下降 |
| ||
…… |
| ||
每当网路达到收敛标准记录迭代次数和对应的准确率测试结果 | |||
将这一过程重复199次 |
| ||
δ=0.01 |
| ||
… |
| ||
δ=3e-6 收敛条件是 |
|
if (Math.abs(f2[0]-y[0])< δ && Math.abs(f2[1]-y[1])< δ && Math.abs(f2[2]-y[2])< δ )
因为对应每个δ都有一个n与之对应,所以可以得到一条稳定的n(δ)曲线。让nx0等于ωx0。
用同样的办法制作另外三个网络
d2(mnist 1, x)81-con(3*3)-49-30-3-(3*k) ,k∈(0,1)
制作一个网络分类mnist 1和一张图片x,让左右两个网络实现参数共享,让x向1,0,0收敛,让mnist 1向0,1,0收敛,得到ωx1.
d2(mnist 2, x)81-con(3*3)-49-30-3-(3*k) ,k∈(0,1)
制作一个网络分类mnist 2和一张图片x,让左右两个网络实现参数共享,让x向1,0,0收敛,让mnist 2向0,0,1收敛,得到ωx2.
计算mnist0,mnist1和mnist2相对一个参照物x的频率,让他们的频率可以相互比较。
d3(mnist 0,1,2)81-con(3*3)-49-30-3-(3*k) ,k∈(0,1)
制作一个网络分类mnist 0,1,2让三个网络实现参数共享,让mnist 0向1,0,0收敛,让mnist 1向0,1,0收敛,让mnist 2 向0,0,1收敛,得到ω012.
计算ωx
所以ωx,ω0,ω1,ω2都可以被解出来。
再根据质量关系
如果假设mx=1。m0,m1,m2也都可以被解出来
具体解得的数据
δ | ω123 | ωx0 | ωx1 | ωx2 | ωx | ω0 | ω1 | ω2 | ||
0.1 | 7587.95 | 2472.46 | 2934.42 | 3140.44 | 2055.39 | 3324.81 | #NUM! | #NUM! | ||
1.00E-02 | 11022.2 | 3210.84 | 3790.5 | 4027.85 | 2635.91 | 4469.02 | #NUM! | #NUM! | ||
1.00E-03 | 18193.2 | 4364.11 | 5471.13 | 5291.57 | 3579.12 | 6091.61 | #NUM! | #NUM! | ||
9*1e-4 | 19061.9 | 4436.95 | 5452.92 | 5168.63 | 3569.43 | 6578.86 | #NUM! | #NUM! | ||
8*1e-4 | 19311.7 | 4632.25 | 5613.24 | 5432.4 | 3723.26 | 6889.13 | #NUM! | #NUM! | ||
7*1e-4 | 20254.4 | 4830.88 | 5765.85 | 5547.04 | 3839.11 | 7484.61 | #NUM! | #NUM! | ||
6*1e-4 | 21368.1 | 5128.38 | 5991.87 | 6051.89 | 4084.89 | 7877.29 | #NUM! | #NUM! | ||
5*1e-4 | 22162.8 | 6119.18 | 6673.56 | 6826.39 | 4711.76 | 10931.1 | #NUM! | #NUM! | ||
4*1e-4 | 22926.2 | 7350.78 | 7738.91 | 8741.98 | 5745.78 | 12195.5 | 17949.2 | #NUM! | ||
3*1e-4 | 25926.6 | 9288.86 | 10599.9 | 11598.3 | 7640.9 | 12855 | 38570.7 | #NUM! | ||
2*1e-4 | 29002.3 | 13223 | 14411.3 | 15514.8 | 10781.1 | 18781.3 | 31213.9 | #NUM! | ||
1.00E-04 | 37411.5 | 25290.2 | 27430.9 | 29153.8 | 22370.7 | 29764.2 | 38931.9 | 53083.3 | ||
9*1e-5 | 39277 | 26452.8 | 30887 | 33227.6 | 24944.5 | 28272.6 | 45208.3 | 69954.5 | ||
8*1e-5 | 39619.2 | 30812.7 | 34556.4 | 35642 | 29511.8 | 32302.4 | 43574.7 | 48439.4 | ||
7*1e-5 | 42224.3 | 34396 | 39146.5 | 39702.1 | 34088 | 34712.5 | 47430.5 | 49492.7 | ||
6*1e-5 | 46435.3 | 39686.3 | 46285.1 | 45362.6 | 41007.1 | 38485.4 | 54320.9 | 51485.4 | ||
5*1e-5 | 45628.2 | 45913.8 | 52943.6 | 52850.1 | 56574 | 39643.5 | 49933 | 49776.4 | ||
4*1e-5 | 52063.7 | 58538.8 | 66635.4 | 62407.9 | 82495.7 | 47853.1 | 57402.7 | 52229.9 | ||
3*1e-5 | 54023.4 | 73604.5 | 86087.4 | 82569 | #NUM! | #NUM! | #NUM! | #NUM! | ||
2*1e-5 | 65447.1 | 105869 | 121513 | 114573 | #NUM! | #NUM! | #NUM! | #NUM! | ||
1.00E-05 | 80455.8 | 199074 | 235384 | 193000 | #NUM! | #NUM! | #NUM! | #NUM! | ||
9*1e-6 | 85210.4 | 217783 | 255118 | 224412 | #NUM! | #NUM! | #NUM! | #NUM! | ||
8*1e-6 | 90364.4 | 235942 | 292894 | 242478 | #NUM! | #NUM! | #NUM! | #NUM! | ||
7*1e-6 | 92539.4 | 267342 | 312441 | 276817 | #NUM! | #NUM! | #NUM! | #NUM! | ||
6*1e-6 | 100522 | 298437 | 370803 | 305591 | #NUM! | #NUM! | #NUM! | #NUM! | ||
5*1e-6 | 103184 | 355890 | 424557 | 344916 | #NUM! | #NUM! | #NUM! | #NUM! | ||
4*1e-6 | 112972 | 431037 | 509263 | 409437 | #NUM! | #NUM! | #NUM! | #NUM! | ||
3*1e-6 | 127752 | 539694 | 641035 | 523975 | #NUM! | #NUM! | #NUM! | #NUM! | ||
2*1e-6 | 138964 |
| 936074 | 15953.4 | #VALUE! | #VALUE! | #VALUE! | #VALUE! |
由于统计精度的问题只得到了一部分有效的点
由图ω0,ω1,ω2的曲线有可能有交点。
δ | mx | m0 | m1 | m2 | mx0 | mx1 | mx2 | m123 | k |
0.1 | 1 | 0.38217 | #NUM! | #NUM! | 1.38217 | 0.98124 | 0.85672 | 0.22012 | 4224629 |
1.00E-02 | 1 | 0.34788 | #NUM! | #NUM! | 1.34788 | 0.96716 | 0.85653 | 0.17157 | 6947999 |
1.00E-03 | 1 | 0.34521 | #NUM! | #NUM! | 1.34521 | 0.85591 | 0.91498 | 0.11611 | 1.3E+07 |
9*1e-4 | 1 | 0.29437 | #NUM! | #NUM! | 1.29437 | 0.85698 | 0.95384 | 0.10519 | 1.3E+07 |
8*1e-4 | 1 | 0.29209 | #NUM! | #NUM! | 1.29209 | 0.87993 | 0.93949 | 0.11151 | 1.4E+07 |
7*1e-4 | 1 | 0.2631 | #NUM! | #NUM! | 1.2631 | 0.88667 | 0.95801 | 0.10778 | 1.5E+07 |
6*1e-4 | 1 | 0.26891 | #NUM! | #NUM! | 1.26891 | 0.92954 | 0.91119 | 0.10964 | 1.7E+07 |
5*1e-4 | 1 | 0.1858 | #NUM! | #NUM! | 1.1858 | 0.99697 | 0.95283 | 0.13559 | 2.2E+07 |
4*1e-4 | 1 | 0.22197 | 0.10247 | #NUM! | 1.22197 | 1.10247 | 0.86399 | 0.18843 | 3.3E+07 |
3*1e-4 | 1 | 0.3533 | 0.03924 | #NUM! | 1.3533 | 1.03924 | 0.86802 | 0.26057 | 5.8E+07 |
2*1e-4 | 1 | 0.32951 | 0.1193 | #NUM! | 1.32951 | 1.1193 | 0.96574 | 0.41455 | 1.2E+08 |
1.00E-04 | 1 | 0.5649 | 0.33018 | 0.1776 | 1.5649 | 1.33018 | 1.1776 | 1.07268 | 5E+08 |
9*1e-5 | 1 | 0.77842 | 0.30445 | 0.12715 | 1.77842 | 1.30445 | 1.12715 | 1.21002 | 6.2E+08 |
8*1e-5 | 1 | 0.83468 | 0.45869 | 0.37119 | 1.83468 | 1.45869 | 1.37119 | 1.66456 | 8.7E+08 |
7*1e-5 | 1 | 0.96435 | 0.51652 | 0.47437 | 1.96435 | 1.51652 | 1.47437 | 1.95524 | 1.2E+09 |
6*1e-5 | 1 | 1.13534 | 0.56988 | 0.63438 | 2.13534 | 1.56988 | 1.63438 | 2.33961 | 1.7E+09 |
5*1e-5 | 1 | 2.03652 | 1.28369 | 1.29178 | 3.03652 | 2.28369 | 2.29178 | 4.61198 | 3.2E+09 |
4*1e-5 | 1 | 2.97196 | 2.06537 | 2.49473 | 3.97196 | 3.06537 | 3.49473 | 7.53207 | 6.8E+09 |
3*1e-5 | 1 | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! |
2*1e-5 | 1 | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! |
1.00E-05 | 1 | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! |
9*1e-6 | 1 | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! |
8*1e-6 | 1 | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! |
7*1e-6 | 1 | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! |
6*1e-6 | 1 | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! |
5*1e-6 | 1 | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! |
4*1e-6 | 1 | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! |
3*1e-6 | 1 | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! | #NUM! |
2*1e-6 | 1 | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! |
1.00E-06 | 1 | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! |
1.00E-07 | 1 | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! |
这条质量曲线里m1和m2的值也纠缠在一起。
虽然频率和质量的曲线从图上看都有纠缠但,这几个纠缠的点不完全重合,如果从频率和质量两个维度去分类仍然可能将这几个对象区分开。
这个实验虽然只得到了7组有价值的数据,但也证实了这种模拟是可能的。
实验数据 |
学习率 0.1 |
权重初始化方式 |
Random rand1 =new Random(); |
int ti1=rand1.nextInt(98)+1; |
int xx=1; |
if(ti1%2==0) |
{ xx=-1;} |
tw[a][b]=xx*((double)ti1/x); |
第一层第二层和卷积核的权重的初始化的x分别为1000,1000,200 |
d2(mnist 0, x)81-con(3*3)-49-30-3-(3*k) ,k∈(0,1)的数据
x0---3k | |||||||||
f2[0] | f2[1] | f2[2] | 迭代次数n | 平均准确率p-ave | δ | 耗时ms/次 | 耗时ms/199次 | 耗时min/199次 | 最大准确率p-max |
0.498028 | 0.500578 | 0.267648 | 17.9196 | 0.503767 | 0.5 | 806.3417 | 160464 | 2.6744 | 0.822695 |
0.609062 | 0.391232 | 0.001381 | 1721.543 | 0.5064 | 0.4 | 1103.322 | 219561 | 3.65935 | 0.969267 |
0.715655 | 0.284307 | 0.001383 | 1913.513 | 0.673654 | 0.3 | 1133.392 | 225547 | 3.759117 | 0.997636 |
0.819332 | 0.180886 | 0.001309 | 2203.241 | 0.753759 | 0.2 | 287.1608 | 57146 | 0.952433 | 0.997636 |
0.913426 | 0.086324 | 0.001203 | 2472.457 | 0.785112 | 0.1 | 1594.548 | 317330 | 5.288833 | 0.998109 |
0.992089 | 0.007913 | 9.45E-04 | 3210.839 | 0.75202 | 0.01 | 1374.216 | 273486 | 4.5581 | 0.997636 |
0.999266 | 7.34E-04 | 6.94E-04 | 4364.106 | 0.697801 | 0.001 | 1594.709 | 317364 | 5.2894 | 0.997636 |
0.999359 | 6.42E-04 | 6.69E-04 | 4436.95 | 0.71783 | 9.00E-04 | 1835.452 | 365264 | 6.087733 | 0.99669 |
0.999431 | 5.69E-04 | 6.39E-04 | 4632.246 | 0.690243 | 8.00E-04 | 2244.447 | 446649 | 7.44415 | 0.99669 |
0.999527 | 4.74E-04 | 5.96E-04 | 4830.879 | 0.677335 | 7.00E-04 | 2293.94 | 456497 | 7.608283 | 0.995272 |
0.999606 | 3.95E-04 | 5.60E-04 | 5128.377 | 0.722364 | 6.00E-04 | 2407.397 | 479072 | 7.984533 | 0.995745 |
0.999698 | 3.02E-04 | 4.79E-04 | 6119.181 | 0.739387 | 5.00E-04 | 2638.276 | 525025 | 8.750417 | 0.997636 |
0.999792 | 2.08E-04 | 3.92E-04 | 7350.779 | 0.781313 | 4.00E-04 | 2925.864 | 582255 | 9.70425 | 0.998109 |
0.99985 | 1.50E-04 | 2.96E-04 | 9288.859 | 0.773073 | 3.00E-04 | 3337.955 | 664269 | 11.07115 | 0.997163 |
0.999908 | 9.19E-05 | 1.98E-04 | 13223.02 | 0.806277 | 2.00E-04 | 3833.729 | 762927 | 12.71545 | 0.997163 |
0.994943 | 0.005057 | 9.89E-05 | 25290.15 | 0.806339 | 1.00E-04 | 5484.06 | 1091329 | 18.18882 | 0.997636 |
0.999972 | 2.78E-05 | 8.91E-05 | 26452.81 | 0.785402 | 9.00E-05 | 5786.945 | 1151603 | 19.19338 | 0.997636 |
0.994949 | 0.005051 | 7.92E-05 | 30812.7 | 0.752778 | 8.00E-05 | 5980.07 | 1190035 | 19.83392 | 0.998582 |
0.994954 | 0.005046 | 6.92E-05 | 34396 | 0.774002 | 7.00E-05 | 8870.95 | 1765335 | 29.42225 | 0.998109 |
0.994957 | 0.005043 | 5.94E-05 | 39686.29 | 0.775178 | 6.00E-05 | 9581.141 | 1906647 | 31.77745 | 0.998582 |
0.994962 | 0.005038 | 4.94E-05 | 45913.83 | 0.764458 | 5.00E-05 | 11592.85 | 2306978 | 38.44963 | 0.996217 |
0.98994 | 0.01006 | 3.96E-05 | 58538.81 | 0.785692 | 4.00E-05 | 14235.63 | 2832906 | 47.2151 | 0.997636 |
0.989942 | 0.010058 | 2.96E-05 | 73604.5 | 0.74317 | 3.00E-05 | 18005.08 | 3583011 | 59.71685 | 0.99669 |
0.984921 | 0.015079 | 1.97E-05 | 105868.7 | 0.728406 | 2.00E-05 | 24788.76 | 4932971 | 82.21618 | 0.998582 |
0.994972 | 0.005028 | 9.89E-06 | 199073.6 | 0.710966 | 1.00E-05 | 45093.17 | 8973556 | 149.5593 | 0.995745 |
0.979897 | 0.020103 | 8.91E-06 | 217782.7 | 0.707915 | 9.00E-06 | 50139.76 | 9977813 | 166.2969 | 0.998109 |
0.989948 | 0.010052 | 7.92E-06 | 235942 | 0.692995 | 8.00E-06 | 45157.56 | 8986357 | 149.7726 | 0.992435 |
0.994973 | 0.005027 | 6.93E-06 | 267341.6 | 0.700398 | 7.00E-06 | 60661.26 | 12071590 | 201.1932 | 0.997636 |
0.999999 | 1.47E-06 | 5.94E-06 | 298437.4 | 0.694805 | 6.00E-06 | 65289.42 | 12992611 | 216.5435 | 0.994799 |
0.999999 | 1.04E-06 | 4.96E-06 | 355890.1 | 0.682433 | 5.00E-06 | 75109.63 | 14946820 | 249.1137 | 0.98487 |
0.999999 | 8.47E-07 | 3.97E-06 | 431037.4 | 0.668444 | 4.00E-06 | 82579.55 | 16433350 | 273.8892 | 0.996217 |
0.994974 | 0.005026 | 2.98E-06 | 539693.7 | 0.692377 | 3.00E-06 | 116352.7 | 23154181 | 385.903 | 0.987234 |
d2(mnist 1, x)81-con(3*3)-49-30-3-(3*k) ,k∈(0,1)的数据
x1---3k | |||||||||
f2[0] | f2[1] | f2[2] | 迭代次数n | 平均准确率p-ave | δ | 耗时ms/次 | 耗时ms/199次 | 耗时min/199次 | 最大准确率p-max |
0.494146 | 0.50332 | 0.300855 | 16.51759 | 0.519529 | 0.5 | 1215.678 | 241922 | 4.032033 | 0.899291 |
0.391208 | 0.608624 | 0.001349 | 2005.116 | 0.870722 | 0.4 | 1676.628 | 333650 | 5.560833 | 0.986761 |
0.285317 | 0.714582 | 0.001306 | 2308.02 | 0.885643 | 0.3 | 1746.588 | 347586 | 5.7931 | 0.986761 |
0.18278 | 0.817472 | 0.001167 | 2732.171 | 0.863255 | 0.2 | 1843.241 | 366837 | 6.11395 | 0.982033 |
0.085759 | 0.914178 | 0.00114 | 2934.422 | 0.860484 | 0.1 | 1889 | 375928 | 6.265467 | 0.989125 |
0.007483 | 0.992533 | 8.83E-04 | 3790.503 | 0.850812 | 0.01 | 2082.854 | 414490 | 6.908167 | 0.991017 |
7.48E-04 | 0.999251 | 5.74E-04 | 5471.126 | 0.821474 | 0.001 | 2046.261 | 407207 | 6.786783 | 0.988652 |
6.41E-04 | 0.999359 | 5.69E-04 | 5452.925 | 0.824933 | 9.00E-04 | 2477.819 | 493102 | 8.218367 | 0.98818 |
5.94E-04 | 0.999407 | 5.58E-04 | 5613.236 | 0.831267 | 8.00E-04 | 2513.638 | 500214 | 8.3369 | 0.987707 |
5.11E-04 | 0.999488 | 5.46E-04 | 5765.849 | 0.823774 | 7.00E-04 | 2560.799 | 509614 | 8.493567 | 0.990071 |
4.02E-04 | 0.999598 | 5.18E-04 | 5991.869 | 0.821353 | 6.00E-04 | 2605.503 | 518496 | 8.6416 | 0.990544 |
3.24E-04 | 0.999677 | 4.49E-04 | 6673.558 | 0.812816 | 5.00E-04 | 2740.698 | 545400 | 9.09 | 0.993853 |
2.49E-04 | 0.999751 | 3.80E-04 | 7738.915 | 0.839512 | 4.00E-04 | 2977.513 | 592525 | 9.875417 | 0.991962 |
1.54E-04 | 0.999846 | 2.89E-04 | 10599.87 | 0.826991 | 3.00E-04 | 3172.347 | 631297 | 10.52162 | 0.991962 |
9.67E-05 | 0.999903 | 1.96E-04 | 14411.34 | 0.801666 | 2.00E-04 | 4643.402 | 924037 | 15.40062 | 0.991017 |
4.43E-05 | 0.999956 | 9.90E-05 | 27430.87 | 0.817276 | 1.00E-04 | 7745.357 | 1541326 | 25.68877 | 0.990544 |
0.005061 | 0.994939 | 8.88E-05 | 30887.03 | 0.823458 | 9.00E-05 | 8030.497 | 1598069 | 26.63448 | 0.993381 |
0.010082 | 0.989918 | 7.89E-05 | 34556.39 | 0.813407 | 8.00E-05 | 9136.382 | 1818140 | 30.30233 | 0.992435 |
2.54E-05 | 0.999975 | 6.92E-05 | 39146.48 | 0.793236 | 7.00E-05 | 9865.337 | 1963209 | 32.72015 | 0.992908 |
0.010071 | 0.989929 | 5.92E-05 | 46285.07 | 0.796964 | 6.00E-05 | 11820.8 | 2352343 | 39.20572 | 0.991962 |
0.010067 | 0.989933 | 4.92E-05 | 52943.62 | 0.78607 | 5.00E-05 | 13333.96 | 2653462 | 44.22437 | 0.991489 |
0.020113 | 0.979887 | 3.94E-05 | 66635.38 | 0.786324 | 4.00E-05 | 12621.33 | 2511660 | 41.861 | 0.992435 |
0.010062 | 0.989938 | 2.96E-05 | 86087.45 | 0.765207 | 3.00E-05 | 16507.18 | 3284929 | 54.74882 | 0.991017 |
6.84E-06 | 0.999993 | 1.97E-05 | 121512.8 | 0.766105 | 2.00E-05 | 23216.28 | 4620054 | 77.0009 | 0.990071 |
0.020104 | 0.979896 | 9.88E-06 | 235383.6 | 0.757124 | 1.00E-05 | 45063.69 | 8967677 | 149.4613 | 0.991962 |
0.005028 | 0.994972 | 8.91E-06 | 255118.4 | 0.734806 | 9.00E-06 | 48584.32 | 9668280 | 161.138 | 0.990071 |
2.59E-06 | 0.999997 | 7.91E-06 | 292894 | 0.745213 | 8.00E-06 | 67311.87 | 13395064 | 223.2511 | 0.989598 |
0.010052 | 0.989948 | 6.92E-06 | 312441.3 | 0.73532 | 7.00E-06 | 52103.28 | 10368570 | 172.8095 | 0.986288 |
0.005027 | 0.994973 | 5.95E-06 | 370802.8 | 0.729998 | 6.00E-06 | 62282.38 | 12394211 | 206.5702 | 0.988652 |
0.010052 | 0.989948 | 4.96E-06 | 424557.5 | 0.738698 | 5.00E-06 | 73037.1 | 14534383 | 242.2397 | 0.986761 |
1.06E-06 | 0.999999 | 3.96E-06 | 509263.2 | 0.719527 | 4.00E-06 | 83283.84 | 16573502 | 276.225 | 0.992908 |
7.79E-07 | 0.999999 | 2.97E-06 | 641035.2 | 0.72789 | 3.00E-06 | 113768.1 | 22639857 | 377.331 | 0.98818 |
5.31E-07 | 0.999999 | 1.99E-06 | 936074.1 | 0.704451 | 2.00E-06 | 162290.3 | 32295803 | 538.2634 | 0.985343 |
d2(mnist 2, x)81-con(3*3)-49-30-3-(3*k) ,k∈(0,1)的数据
x2 | |||||||||
f2[0] | f2[1] | f2[2] | 迭代次数n | 平均准确率p-ave | δ | 耗时ms/次 | 耗时ms/199次 | 耗时min/199次 | 最大准确率p-max |
0.500087 | 0.239966 | 0.498985 | 21.40201 | 0.503132 | 0.5 | 749.8894 | 149243 | 2.487383 | 0.719682 |
0.390571 | 0.001166 | 0.609555 | 2119.417 | 0.67279 | 0.4 | 1158.015 | 230477 | 3.841283 | 0.919483 |
0.283649 | 0.001122 | 0.716415 | 2520.121 | 0.691709 | 0.3 | 1231.538 | 245076 | 4.0846 | 0.909046 |
0.182927 | 0.001091 | 0.817045 | 2697.608 | 0.70339 | 0.2 | 1264.744 | 251699 | 4.194983 | 0.916004 |
0.085491 | 0.001024 | 0.914714 | 3140.442 | 0.689823 | 0.1 | 1359.94 | 270631 | 4.510517 | 0.904573 |
0.007564 | 8.38E-04 | 0.992453 | 4027.849 | 0.66199 | 0.01 | 1514.744 | 301434 | 5.0239 | 0.919483 |
7.01E-04 | 6.68E-04 | 0.999298 | 5291.568 | 0.634952 | 0.001 | 1744.804 | 347216 | 5.786933 | 0.932406 |
6.23E-04 | 6.64E-04 | 0.999376 | 5168.633 | 0.627004 | 9.00E-04 | 1730.447 | 344375 | 5.739583 | 0.917495 |
5.42E-04 | 6.44E-04 | 0.999459 | 5432.402 | 0.657717 | 8.00E-04 | 1818.317 | 361846 | 6.030767 | 0.913519 |
4.73E-04 | 6.17E-04 | 0.999527 | 5547.035 | 0.644328 | 7.00E-04 | 1827.683 | 363710 | 6.061833 | 0.920477 |
3.61E-04 | 5.52E-04 | 0.999639 | 6051.889 | 0.633463 | 6.00E-04 | 1936.814 | 385426 | 6.423767 | 0.912028 |
2.64E-04 | 4.81E-04 | 0.999736 | 6826.392 | 0.626565 | 5.00E-04 | 1777.729 | 353783 | 5.896383 | 0.925447 |
1.91E-04 | 3.92E-04 | 0.999809 | 8741.98 | 0.630933 | 4.00E-04 | 2531.266 | 503722 | 8.395367 | 0.902584 |
1.25E-04 | 2.94E-04 | 0.999875 | 11598.28 | 0.618857 | 3.00E-04 | 3013.085 | 599619 | 9.99365 | 0.92495 |
6.72E-05 | 1.97E-04 | 0.999933 | 15514.78 | 0.584823 | 2.00E-04 | 3689.241 | 734159 | 12.23598 | 0.862326 |
0.00505 | 9.83E-05 | 0.99495 | 29153.83 | 0.565014 | 1.00E-04 | 6322.709 | 1258219 | 20.97032 | 0.778827 |
0.015097 | 8.82E-05 | 0.984903 | 33227.56 | 0.568439 | 9.00E-05 | 7009.352 | 1394878 | 23.24797 | 0.779821 |
0.010068 | 7.85E-05 | 0.989932 | 35641.99 | 0.57249 | 8.00E-05 | 8048.271 | 1601608 | 26.69347 | 0.903082 |
0.01509 | 6.88E-05 | 0.98491 | 39702.06 | 0.562949 | 7.00E-05 | 9952.528 | 1980553 | 33.00922 | 0.807157 |
0.025139 | 5.90E-05 | 0.974861 | 45362.58 | 0.558868 | 6.00E-05 | 11509.38 | 2290367 | 38.17278 | 0.878231 |
1.07E-05 | 4.91E-05 | 0.999989 | 52850.1 | 0.545721 | 5.00E-05 | 13502.02 | 2686904 | 44.78173 | 0.705765 |
0.010059 | 3.93E-05 | 0.989941 | 62407.9 | 0.544195 | 4.00E-05 | 15279.87 | 3040697 | 50.67828 | 0.693837 |
0.01508 | 2.95E-05 | 0.98492 | 82569.04 | 0.542946 | 3.00E-05 | 20272.58 | 4034248 | 67.23747 | 0.723658 |
0.015079 | 1.96E-05 | 0.984921 | 114572.7 | 0.537536 | 2.00E-05 | 19727.65 | 3925806 | 65.4301 | 0.783797 |
0.005027 | 9.84E-06 | 0.994973 | 193000.5 | 0.531015 | 1.00E-05 | 33317.63 | 6630210 | 110.5035 | 0.709742 |
0.010052 | 8.86E-06 | 0.989948 | 224411.6 | 0.530356 | 9.00E-06 | 37654.61 | 7493268 | 124.8878 | 0.663022 |
0.020102 | 7.87E-06 | 0.979898 | 242478.2 | 0.528997 | 8.00E-06 | 42188.21 | 8395457 | 139.9243 | 0.756461 |
1.29E-06 | 6.91E-06 | 0.999999 | 276817.3 | 0.529656 | 7.00E-06 | 47674.84 | 9487293 | 158.1216 | 0.785288 |
0.010051 | 5.92E-06 | 0.989949 | 305591.4 | 0.527146 | 6.00E-06 | 51288.63 | 10206438 | 170.1073 | 0.639165 |
0.005026 | 4.94E-06 | 0.994974 | 344915.9 | 0.524828 | 5.00E-06 | 59820.35 | 11904251 | 198.4042 | 0.604374 |
0.005026 | 3.95E-06 | 0.994974 | 409437.4 | 0.526517 | 4.00E-06 | 70332.83 | 13996238 | 233.2706 | 0.708748 |
4.95E-07 | 2.97E-06 | 1 | 523975 | 0.522715 | 3.00E-06 | 97274.69 | 19357665 | 322.6278 | 0.58002 |
d3(mnist 0,1,2)81-con(3*3)-49-30-3-(3*k) ,k∈(0,1)的数据
已经在《计算一个网络准确率达到99.9%的时间和需要的迭代次数---验证实例三分类minst0,1,2》给出了
d2(mnist 0, x)81-con(3*3)-49-30-3-(3*k) ,k∈(0,1)
d2(mnist 1, x)81-con(3*3)-49-30-3-(3*k) ,k∈(0,1)
d2(mnist 2, x)81-con(3*3)-49-30-3-(3*k) ,k∈(0,1)
的具体数据比较多有感兴趣的朋友可以到我的资源里下载。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。