赞
踩
DSSM(Deep Structured Semantic Model)
,由微软研究院提出,利用深度神经网络将文本表示为低维度的向量,应用于文本相似度匹配场景下的一个算法。不仅局限于文本,在其他可以计算相似性计算的场景,例如推荐系统中。根据用户搜索行为中query
(文本搜索)和doc
(要匹配的文本)的日志数据,使用深度学习网络将query和doc映射到相同维度的语义空间中,即query侧特征的embedding和doc侧特征的embedding,从而得到语句的低维语义向量表达sentence embedding,用于预测两句话的语义相似度。
模型结构:user侧塔和item侧塔分别经过各自的DNN得到embedding,再计算两者之间的相似度
特点:
正样本:以内容推荐为例,选“用户点击”的item为正样本。最多考虑一下用户停留时长,将“用户误点击”排除在外
负样本:user
与item不匹配的样本,为负样本。
class DSSM(torch.nn.Module):
def __init__(self, user_features, item_features, user_params, item_params, temperature=1.0):
super().__init__()
self.user_features = user_features
self.item_features = item_features
self.temperature = temperature
self.user_dims = sum([fea.embed_dim for fea in user_features])
self.item_dims = sum([fea.embed_dim for fea in item_features])
self.embedding = EmbeddingLayer(user_features + item_features)
self.user_mlp = MLP(self.user_dims, output_layer=False, **user_params)
self.item_mlp = MLP(self.item_dims
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。