赞
踩
b站视频:https://www.bilibili.com/video/BV1fD421j7hQ/
【腾讯文档】RT-DETR改进前后数据
rtdetr-r50 summary: 480 layers, 41964383 parameters, 0 gradients, 129.6 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 380/380 [00:17<00:00, 21.27it/s]
all 3036 3427 0.699 0.685 0.659 0.507
weigh 3036 337 0.68 0.721 0.692 0.537
height measure 3036 802 0.681 0.5 0.527 0.356
drop ball 3036 820 0.601 0.741 0.609 0.475
size measure 3036 601 0.672 0.631 0.619 0.481
record 3036 867 0.863 0.834 0.847 0.688
Speed: 0.1ms preprocess, 4.3ms inference, 0.0ms loss, 0.2ms postprocess per image
Results saved to runs/train/exp
val: Scanning /data/RT-DETR/yolo_behavior_Dataset_all2/labels/val.cache... 3036 images, 0 backgrounds, 0 corrupt: 100%|██████████| 3036/3036 [00:00<?, ?it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 759/759 [00:26<00:00, 28.76it/s]
all 3036 3427 0.71 0.681 0.658 0.507
weigh 3036 337 0.688 0.721 0.691 0.535
height measure 3036 802 0.693 0.481 0.525 0.356
drop ball 3036 820 0.61 0.733 0.606 0.473
size measure 3036 601 0.687 0.633 0.622 0.482
record 3036 867 0.87 0.835 0.847 0.69
Speed: 0.1ms preprocess, 6.8ms inference, 0.0ms loss, 0.2ms postprocess per image
Results saved to runs/val/exp
rtdetr-r50 summary: 480 layers, 41964383 parameters, 0 gradients, 129.6 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 365/365 [00:17<00:00, 21.07it/s]
all 2915 3275 0.721 0.654 0.663 0.511
weigh 2915 337 0.678 0.668 0.657 0.512
height measure 2915 726 0.669 0.482 0.536 0.385
drop ball 2915 757 0.642 0.665 0.614 0.463
size measure 2915 589 0.761 0.643 0.671 0.519
record 2915 866 0.856 0.813 0.838 0.677
Speed: 0.1ms preprocess, 4.3ms inference, 0.0ms loss, 0.2ms postprocess per image
Results saved to runs/train/exp3
val: Scanning /data/RT-DETR/yolo_behavior_Dataset_all3_filter/labels/val.cache... 2915 images, 0 backgrounds, 0 corrupt: 100%|██████████| 2915/2915 [00:00<?, ?it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 729/729 [00:25<00:00, 28.35it/s]
all 2915 3275 0.722 0.654 0.662 0.511
weigh 2915 337 0.683 0.671 0.654 0.511
height measure 2915 726 0.661 0.482 0.54 0.388
drop ball 2915 757 0.643 0.666 0.613 0.464
size measure 2915 589 0.764 0.635 0.665 0.515
record 2915 866 0.858 0.816 0.839 0.677
Speed: 0.1ms preprocess, 6.8ms inference, 0.0ms loss, 0.2ms postprocess per image
rtdetr-r50 summary: 480 layers, 41964383 parameters, 0 gradients, 129.6 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 407/407 [00:18<00:00, 21.50it/s]
all 3252 3624 0.741 0.687 0.667 0.53
weigh 3252 674 0.876 0.653 0.669 0.554
height measure 3252 726 0.642 0.519 0.518 0.376
drop ball 3252 758 0.62 0.781 0.673 0.52
size measure 3252 589 0.781 0.628 0.629 0.489
record 3252 877 0.787 0.855 0.848 0.713
Speed: 0.1ms preprocess, 4.3ms inference, 0.0ms loss, 0.2ms postprocess per image
Results saved to runs/train/exp5
val: Scanning /data/RT-DETR/yolo_behavior_Dataset_all4_data_enhance/labels/val.cache... 3252 images, 0 backgrounds, 0 corrupt: 100%|██████████| 3252/
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 813/813 [00:28<00:00, 29.03it/s]
all 3252 3624 0.739 0.684 0.663 0.527
weigh 3252 674 0.876 0.651 0.671 0.556
height measure 3252 726 0.641 0.514 0.512 0.37
drop ball 3252 758 0.625 0.776 0.67 0.518
size measure 3252 589 0.768 0.628 0.62 0.481
record 3252 877 0.783 0.852 0.843 0.711
Speed: 0.1ms preprocess, 6.7ms inference, 0.0ms loss, 0.2ms postprocess per image
Results saved to runs/val/exp5
Ultralytics YOLOv8.0.201 声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/617814
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。