当前位置:   article > 正文

一些简单却精妙的算法

一些简单却精妙的算法


在编程的世界里,简洁的代码往往隐藏着深邃的智慧。一起来看看那些看似简单,实则精妙绝伦的代码片段,体会编程语言的优雅与力量。

1.树状数组

int lowbit(int x)  
{    
    return x&-x;    
}
  • 1
  • 2
  • 3
  • 4

树状数组里的这个,太精妙了,树状数组使区间求和复杂度降低到了log(n),发明这段代码的人一定是个天才,而这个lowbit恰恰是最精妙的一部分,可以准确的找到我们需要加的部分,巧妙的利用了计算机的位运算。

2.红黑树

defun rbt-balance (tree)  
  "Balance the rbtree list TREE."  
  (pcase tree  
    (`(B (R (R ,a ,x ,b) ,y ,c) ,z ,d) `(R (B ,a ,x ,b) ,y (B ,c ,z ,d)))  
    (`(B (R ,a ,x (R ,b ,y ,c)) ,z ,d) `(R (B ,a ,x ,b) ,y (B ,c ,z ,d)))  
    (`(B ,a ,x (R (R ,b ,y ,c) ,z ,d)) `(R (B ,a ,x ,b) ,y (B ,c ,z ,d)))  
    (`(B ,a ,x (R ,b ,y (R ,c ,z ,d))) `(R (B ,a ,x ,b) ,y (B ,c ,z ,d)))  
    (_                                 tree)))  
  
(defun rbt-insert- (x s)  
  "Auxilary function of rbt-insert."  
  (pcase s  
    (`nil              `(R nil ,x nil))  
    (`(,color ,a ,y ,b) (cond ((< x y)  
                               (rbt-balance `(,color ,(rbt-insert- x a) ,y ,b)))  
                              ((> x y)  
                               (rbt-balance `(,color ,a ,y ,(rbt-insert- x b))))  
                              (t  
                               s)))  
    (_                  (error "Expected tree: %S" s))))  
  
(defun rbt-insert (x s)  
  "Insert S to rbtree X."  
  (pcase (rbt-insert- x s)  
    (`(,_ ,a ,y ,b) `(B ,a ,y ,b))  
    (_              (error "Internal error: %S" s))))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

3.星星打分

function getRating(rating) {  
    if(rating > 5 || rating < 0) throw new Error('数字不在范围内');  
    return '★★★★★☆☆☆☆☆'.substring(5 - rating, 10 - rating );  
}
  • 1
  • 2
  • 3
  • 4

这种实现方式之所以精妙,是因为它利用了字符串的固定模式和 substring 方法的灵活性来生成不同数量的星星,而不需要使用循环或额外的逻辑来逐个添加或删除星星。这种方法简洁且高效,特别是在需要频繁生成星级评分表示时。

然而,这段代码也有局限性,它假设评分总是整数,并且只支持0到5的评分范围。如果需要支持小数评分或更广泛的评分范围,这段代码将需要相应的调整。

4.欧几里得算法

function gcd(a, b) {  
    return b ? gcd(b, a % b) : a;   
}
  • 1
  • 2
  • 3

这种递归实现的欧几里得算法非常简洁且高效。它利用了数学上的一个性质:两个整数的最大公约数与它们的余数和较小数的最大公约数相同。即 gcd(a, b) = gcd(b, a % b)。

5.快速幂

function fastPower(b, n) {  
    if (n === 0) return 1;  
    const result = fastPower(b, Math.floor(n / 2));  
    return n % 2 === 0 ? result * result : b * result * result;
  • 1
  • 2
  • 3
  • 4

用于高效地计算 b 的 n 次方。快速幂算法特别适用于计算大幂次的情况,因为它将幂次的计算复杂度从 O(n) 降低到 O(log n)。

6.并查集

int find(int x){  
  x==parent[x]:find(parent[x]);  
}
  • 1
  • 2
  • 3

并查集(Union-Find)数据结构中的 find 函数的简洁实现。

递归查找:find 函数通过递归的方式查找元素 x 的根节点。递归会在元素与其父节点不同时,继续查找父节点的父节点,直到找到一个元素其父节点是它自己的元素,即根节点。

路径压缩:代码中的三元运算符 ?: 实现了路径压缩技术。当 x 不是其根节点时(即 x != parent[x]),find 函数会调用自身并传入 parent[x] 作为参数。在递归返回的过程中,每个节点的父节点指针都被更新为最终的根节点,这样可以减少后续查找操作的深度。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/713011
推荐阅读
相关标签
  

闽ICP备14008679号