赞
踩
参考:
原文链接
http://www.cnblogs.com/LBSer/p/4083131.html
https://blog.csdn.net/scorpio3k/article/details/53103239
http://jinnianshilongnian.iteye.com/blog/2305117
http://iamzhongyong.iteye.com/blog/1742829
https://blog.csdn.net/qianshangding0708/article/details/104026669
https://blog.csdn.net/qianshangding0708/article/details/104026669
某天A君突然发现自己的接口请求量突然涨到之前的10倍,没多久该接口几乎不可使用,并引发连锁反应导致整个系统崩溃。如何应对这种情况呢?生活给了我们答案:比如老式电闸都安装了保险丝,一旦有人使用超大功率的设备,保险丝就会烧断以保护各个电器不被强电流给烧坏。同理我们的接口也需要安装上“保险丝”,以防止非预期的请求对系统压力过大而引起的系统瘫痪,当流量过大时,可以采取拒绝或者引流等机制。
漏桶算法思路很简单,水(请求)先进入到漏桶里,漏桶以一定的速度出水,当水流入速度过大会直接溢出,可以看出漏桶算法能强行限制数据的传输速率。
对于很多应用场景来说,除了要求能够限制数据的平均传输速率外,还要求允许某种程度的突发传输。这时候漏桶算法可能就不合适了,令牌桶算法更为适合。如图2所示,令牌桶算法的原理是系统会以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则需要先从桶里获取一个令牌,当桶里没有令牌可取时,则拒绝服务。
Google开源工具包Guava提供了限流工具类RateLimiter,该类基于令牌桶算法来完成限流,非常易于使用。RateLimiter类的接口描述请参考:RateLimiter接口描述,具体使用请参考:RateLimiter使用实践。 下面是主要源码:
public double acquire() { return acquire(1); } public double acquire(int permits) { checkPermits(permits); //检查参数是否合法(是否大于0) long microsToWait; synchronized (mutex) { //应对并发情况需要同步 microsToWait = reserveNextTicket(permits, readSafeMicros()); //获得需要等待的时间 } ticker.sleepMicrosUninterruptibly(microsToWait); //等待,当未达到限制时,microsToWait为0 return 1.0 * microsToWait / TimeUnit.SECONDS.toMicros(1L); } private long reserveNextTicket(double requiredPermits, long nowMicros) { resync(nowMicros); //补充令牌 long microsToNextFreeTicket = nextFreeTicketMicros - nowMicros; double storedPermitsToSpend = Math.min(requiredPermits, this.storedPermits); //获取这次请求消耗的令牌数目 double freshPermits = requiredPermits - storedPermitsToSpend; long waitMicros = storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend) + (long) (freshPermits * stableIntervalMicros); this.nextFreeTicketMicros = nextFreeTicketMicros + waitMicros; this.storedPermits -= storedPermitsToSpend; // 减去消耗的令牌 return microsToNextFreeTicket; } private void resync(long nowMicros) { // if nextFreeTicket is in the past, resync to now if (nowMicros > nextFreeTicketMicros) { storedPermits = Math.min(maxPermits, storedPermits + (nowMicros - nextFreeTicketMicros) / stableIntervalMicros); nextFreeTicketMicros = nowMicros; } }
总结起来:如果要让自己的系统不被打垮,用令牌桶。如果保证别人的系统不被打垮,用漏桶算法
1.并不能说明令牌桶一定比漏洞好,她们使用场景不一样。令牌桶可以用来保护自己,主要用来对调用者频率进行限流,为的是让自己不被打垮。所以如果自己本身有处理能力的时候,如果流量突发(实际消费能力强于配置的流量限制),那么实际处理速率可以超过配置的限制。
2.而漏桶算法,这是用来保护他人,也就是保护他所调用的系统。主要场景是,当调用的第三方系统本身没有保护机制,或者有流量限制的时候,我们的调用速度不能超过他的限制,由于我们不能更改第三方系统,所以只有在主调方控制。这个时候,即使流量突发,也必须舍弃。因为消费能力是第三方决定的。
1、最近在写一个分布式服务的框架,对于分布式服务的框架来说,除了远程调用,还要进行服务的治理,当进行促销的时候,所有的资源都用来完成重要的业务,就比如双11的时候,主要的业务就是让用户查询商品,以及购买支付,此时,金币查询、积分查询等业务就是次要的,因此要对这些服务进行服务的降级,典型的服务降级算法是采用令牌桶算法,因此在写框架的时候去研究了一下令牌桶算法
2、在实施QOS策略时,可以将用户的数据限制在特定的带宽,当用户的流量超过额定带宽时,超过的带宽将采取其它方式来处理。要衡量流量是否超过额定的带宽,网络设备并不是采用单纯的数字加减法来决定的,也就是说,比如带宽为100K,而用户发来的流量为110K,网络设备并不是靠110K减去100K等于10K,就认为用户超过流量10K。网络设备衡量流量是否超过额定带宽,需要使用令牌桶算法来计算。下面详细介绍令牌桶算法机制:
当网络设备衡量流量是否超过额定带宽时,需要查看令牌桶,而令牌桶中会放置一定数量的令牌,一个令牌允许接口发送或接收1bit数据(有时是1 Byte数据),当接口通过1bit数据后,同时也要从桶中移除一个令牌。当桶里没有令牌的时候,任何流量都被视为超过额定带宽,只有当桶中有令牌时,数据才可以通过接口。令牌桶中的令牌不仅仅可以被移除,同样也可以往里添加,所以为了保证接口随时有数据通过,就必须不停地往桶里加令牌,由此可见,往桶里加令牌的速度,就决定了数据通过接口的速度。因此,我们通过控制往令牌桶里加令牌的速度从而控制用户流量的带宽。而设置的这个用户传输数据的速率被称为承诺信息速率(CIR),通常以秒为单位。比如我们设置用户的带宽为1000 bit每秒,只要保证每秒钟往桶里添加1000个令牌即可。
3、举例:将CIR设置为8000 bit/s,那么就必须每秒将8000个令牌放入桶中,当接口有数据通过时,就从桶中移除相应的令牌,每通过1 bit,就从桶中移除1个令牌。当桶里没有令牌的时候,任何流量都被视为超出额定带宽,而超出的流量就要采取额外动作。每秒钟往桶里加的令牌,就决定了用户流量的速率,这个速率就是CIR,但是每秒钟需要往桶里加的令牌总数,并不是一次性加完的,一次性加进的令牌数量被称为Burst size(Bc),如果Bc只是CIR的一半,那么很明显每秒钟就需要往桶里加两次令牌,每次加的数量总是Bc的数量。还有就是加令牌的时间,Time interval(Tc),Tc表示多久该往桶里加一次令牌,而这个时间并不能手工设置,因为这个时间可以靠CIR和Bc的关系计算得到, Bc/ CIR= Tc。
4、令牌桶算法图例
a. 按特定的速率向令牌桶投放令牌
b. 根据预设的匹配规则先对报文进行分类,不符合匹配规则的报文不需要经过令牌桶的处理,直接发送;
c. 符合匹配规则的报文,则需要令牌桶进行处理。当桶中有足够的令牌则报文可以被继续发送下去,同时令牌桶中的令牌 量按报文的长度做相应的减少;
d. 当令牌桶中的令牌不足时,报文将不能被发送,只有等到桶中生成了新的令牌,报文才可以发送。这就可以限制报文的流量只能是小于等于令牌生成的速度,达到限制流量的目的。
5、Java参考代码:
package com.netease.datastream.util.flowcontrol; import java.io.BufferedWriter; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStreamWriter; import java.util.Random; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.ReentrantLock; /** * <pre> * Created by inter12 on 15-3-18. * </pre> */ public class TokenBucket { // 默认桶大小个数 即最大瞬间流量是64M private static final int DEFAULT_BUCKET_SIZE = 1024 * 1024 * 64; // 一个桶的单位是1字节 private int everyTokenSize = 1; // 瞬间最大流量 private int maxFlowRate; // 平均流量 private int avgFlowRate; // 队列来缓存桶数量:最大的流量峰值就是 = everyTokenSize*DEFAULT_BUCKET_SIZE 64M = 1 * 1024 * // 1024 * 64 private ArrayBlockingQueue<Byte> tokenQueue = new ArrayBlockingQueue<Byte>( DEFAULT_BUCKET_SIZE); private ScheduledExecutorService scheduledExecutorService = Executors .newSingleThreadScheduledExecutor(); private volatile boolean isStart = false; private ReentrantLock lock = new ReentrantLock(true); private static final byte A_CHAR = 'a'; public TokenBucket() { } public TokenBucket(int maxFlowRate, int avgFlowRate) { this.maxFlowRate = maxFlowRate; this.avgFlowRate = avgFlowRate; } public TokenBucket(int everyTokenSize, int maxFlowRate, int avgFlowRate) { this.everyTokenSize = everyTokenSize; this.maxFlowRate = maxFlowRate; this.avgFlowRate = avgFlowRate; } public void addTokens(Integer tokenNum) { // 若是桶已经满了,就不再家如新的令牌 for (int i = 0; i < tokenNum; i++) { tokenQueue.offer(Byte.valueOf(A_CHAR)); } } public TokenBucket build() { start(); return this; } /** * 获取足够的令牌个数 * * @return */ public boolean getTokens(byte[] dataSize) { // Preconditions.checkNotNull(dataSize); // Preconditions.checkArgument(isStart, // "please invoke start method first !"); int needTokenNum = dataSize.length / everyTokenSize + 1;// 传输内容大小对应的桶个数 final ReentrantLock lock = this.lock; lock.lock(); try { boolean result = needTokenNum
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。