当前位置:   article > 正文

MNIST数据集转为图片形式输出_mnist数据集输出

mnist数据集输出

前期工作

1、请注意运行代码存入的文件夹的名称,要与代码中的path路径对应一致;
2、下载MNIST数据集(四个压缩包),并将四个压缩包的内容解压出来,如下图①;
3、在运行代码目录下,建立data文件夹,data文件夹下包含两个子文件夹data_adata_c,最后在data_c文件夹下建立以0~9为名的十个文件夹,如下图②③;
这里写图片描述

-----------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------

说明:

1、这里提供两种路径选择,第一个是将所有的图片不区分索引,全部存入data_a文件夹内,第二个是按照图片索引的不同,存入data_c不同文件夹下;
2、可以通过range()函数,指定打印出图片的张数;
3、注意path对应的路径是否一致

# 将打印出的MNIST数据集中所有的图片存入一个data文件夹下
for i in range(0, 10):
    path = "../CNN+Kreas框架+MNIST/data/data_a/"
    name = str(i) + ".png"
    mnist_save_img(x_train[i], path, name)
"""
# 按图片标签的不同,打印MNIST数据集的图片存入不同文件夹下
for i in range(0, 50):
    path = "../CNN+Kreas框架+MNIST/data/data_c/" + str(y_train[i]) +"/"
    name = str(i)+".png"
    mnist_save_img(x_train[i], path, name)
"""
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

-----------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------

源码奉上:

# -*- coding: utf-8 -*-
# -*- author:zzZ_CMing  CSDN address:https://blog.csdn.net/zzZ_CMing
# -*- 2018/07/09; 15:18
# -*- python3.5
"""
将MNIST数据集由二进制文件转为图片形式,保存于指定文件夹下
"""
import os
import struct
import numpy as np
import matplotlib.pyplot as plt

# 读MNIST数据集的图片数据
def mnist_load_img(img_path):
    with open(img_path, "rb") as fp:
        # >是以大端模式读取,i是整型模式,读取前四位的标志位,
        # unpack()函数:是将4个字节联合后再解析成一个数,(读取后指针自动后移)
        msb = struct.unpack('>i', fp.read(4))[0]
        # 标志位为2051,后存图像数据;标志位为2049,后存图像标签
        if msb == 2051:
            # 读取样本个数60000,存入cnt
            cnt = struct.unpack('>i', fp.read(4))[0]
            # rows:行数28;cols:列数28
            rows = struct.unpack('>i', fp.read(4))[0]
            cols = struct.unpack('>i', fp.read(4))[0]
            imgs = np.empty((cnt, rows, cols), dtype="int")
            for i in range(0, cnt):
                for j in range(0, rows):
                    for k in range(0, cols):
                        # 16进制转10进制
                        pxl = int(hex(fp.read(1)[0]), 16)
                        imgs[i][j][k] = pxl
            return imgs
        else:
            return np.empty(1)

# 读MNIST数据集的图片标签
def mnist_load_label(label_path):
    with open(label_path, "rb") as fp:
        msb = struct.unpack('>i', fp.read(4))[0];
        if msb == 2049:
            cnt = struct.unpack('>i', fp.read(4))[0];
            labels = np.empty(cnt, dtype="int");
            for i in range(0, cnt):
                label = int(hex(fp.read(1)[0]), 16);
                labels[i] = label;
            return labels;
        else:
            return np.empty(1);

# 分割训练、测试集的图片数据与图片标签
def mnist_load_data(train_img_path, train_label_path, test_img_path, test_label_path):
    x_train = mnist_load_img(train_img_path);
    y_train = mnist_load_label(train_label_path);
    x_test = mnist_load_img(test_img_path);
    y_test = mnist_load_label(test_label_path);
    return (x_train, y_train), (x_test, y_test);

# 输出打印图片
def mnist_plot_img(img):
    (rows, cols) = img.shape;
    plt.figure();
    plt.gray();
    plt.imshow(img);
    plt.show();

# 按指定位置保存图片
def mnist_save_img(img, path, name):
    if not os.path.exists(path):
        os.mkdir(path)
    (rows, cols) = img.shape
    fig = plt.figure()
    plt.gray()
    plt.imshow(img)
    # 在既定路径里保存图片
    fig.savefig(path + name)



# [start]
x_train = mnist_load_img("train-images.idx3-ubyte")
y_train = mnist_load_label("train-labels.idx1-ubyte")

# 将打印出的MNIST数据集中所有的图片存入一个data文件夹下
for i in range(0, 10):
    path = "../CNN+Kreas框架+MNIST/data/data_a/"
    name = str(i) + ".png"
    mnist_save_img(x_train[i], path, name)
"""
# 按图片标签的不同,打印MNIST数据集的图片存入不同文件夹下
for i in range(0, 50):
    path = "../CNN+Kreas框架+MNIST/data/data_c/" + str(y_train[i]) +"/"
    name = str(i)+".png"
    mnist_save_img(x_train[i], path, name)
"""


#mnist_plot_img(x_train[0, :, :])
"""
x_test = mnist_load_img("t10k-images.idx3-ubyte")
y_test = mnist_load_label("t10k-labels.idx1-ubyte")
"""
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102

效果展示:
这里写图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/201684
推荐阅读
相关标签
  

闽ICP备14008679号