当前位置:   article > 正文

linux下usb驱动配置文件,Linux USB驱动框架分析

usb 配置文件 profiles

Linux USB驱动框架分析(一)

初次接触与OS相关的设备驱动编写,感觉还挺有意思的,为了不至于忘掉看过的东西,笔记跟总结当然不可缺,更何况我决定为嵌入式卖命了。好,言归正传,我

说一说这段时间的收获,跟大家分享一下Linux的驱动开发。但这次只先针对Linux的USB子系统作分析,因为周五研讨老板催货。当然,还会顺带提一

下其他的驱动程序写法。

事实上,Linux的设备驱动都遵循一个惯例——表征驱动程序(用driver更贴切一些,应该称为驱动器比较好吧)的结构体,结构体里面应该包含了驱动

程序所需要的所有资源。用OO的术语来说,就是这个驱动器对象所拥有的属性及成员。由于Linux的内核用c来编写,所以我们也按照这种结构化的思想来分

析代码,但我还是希望从OO的角度来阐述这些细节。这个结构体的名字有驱动开发人员决定,比如说,鼠标可能有一个叫做mouse_dev的struct,

键盘可能由一个keyboard_dev的struct(dev for

device,我们做的只是设备驱动)。而这次我们来分析一下Linux内核源码中的一个usb-skeleton(就是usb驱动的骨架咯),自然,他

定义的设备结构体就叫做usb-skel:

struct usb_skel {

struct usb_device *    udev;              /* the usb device for this device */

struct usb_interface * interface;         /* the interface for this device */

struct semaphore   limit_sem;         /* limiting the number of writes in progress */

unsigned char *        bulk_in_buffer;        /* the buffer to receive data */

size_t             bulk_in_size;      /* the size of the receive buffer */

__u8          bulk_in_endpointAddr;  /* the address of the bulk in endpoint */

__u8          bulk_out_endpointAddr; /* the address of the bulk out endpoint */

struct kref        kref;

};

这里我们得补充说明一下一些USB的协议规范细节。USB能够自动监测设备,并调用相应得驱

动程序处理设备,所以其规范实际上是相当复杂的,幸好,我们不必理会大部分细节问题,因为Linux已经提供相应的解决方案。就我现在的理解来说,USB

的驱动分为两块,一块是USB的bus驱动,这个东西,Linux内核已经做好了,我们可以不管,但我们至少要了解他的功能。形象得说,USB的bus驱

动相当于铺出一条路来,让所有的信息都可以通过这条USB通道到达该到的地方,这部分工作由usb_core来完成。当设备接到USB接口

是,usb_core就检测该设备的一些信息,例如生产厂商ID和产品的ID,或者是设备所属的class、subclass跟protocol,以便确

定应该调用哪一个驱动处理该设备。里面复杂细节我们不用管,我们要做的是另一块工作——usb的设备驱动。也就是说,我们就等着usb_core告诉我们

要工作了,我们才工作。对于usb规范定义的设备,他们有一个设备的框架,对于开发人员来说,他大概如图所示:

从开发人员的角度看,每一个usb设备有若干个配置(configuration)组成,每

个配置又可以有多个接口(interface),每个接口又有多个设置(setting图中没有给出),而接口本身可能没有端点或者多个端点(end

point)。USB的数据交换通过端点来进行,主机与各个端点之间建立起单向的管道来传输数据。而这些接口可以分为四类:

控制(control)

用于配置设备、获取设备信息、发送命令或者获取设备的状态报告

中断(interrupt)

当USB宿主要求设备传输数据时,中断端点会以一个固定的速率传送少量数据,还用于发送数据到USB设备以控制设备,一般不用于传送大量数据。

批量(bulk)

用于大量数据的可靠传输,如果总线上的空间不足以发送整个批量包,它会被分割成多个包传输。

等时(isochronous)

大量数据的不可靠传输,不保证数据的到达,但保证恒定的数据流,多用于数据采集。

Linux中用struct usb_host_endpoint来描述USB端点,每个usb_host_endpoint中包含一个struct usb_endpoint_descriptor结构体,当中包含该端点的信息以及设备自定义的各种信息,这些信息包括:

bEndpointAddress(b for byte)

8位端点地址,其地址还隐藏了端点方向的信息(之前说过,端点是单向的),可以用掩码USB_DIR_OUT和USB_DIR_IN来确定。

bmAttributes

端点的类型,结合USB_ENDPOINT_XFERTYPE_MASK可以确定端点是USB_ENDPOINT_XFER_ISOC(等时)、USB_ENDPOINT_XFER_BULK(批量)还是USB_ENDPOINT_XFER_INT(中断)。

wMaxPacketSize

端点一次处理的最大字节数。发送的BULK包可以大于这个数值,但会被分割传送。

bInterval

如果端点是中断类型,该值是端点的间隔设置,以毫秒为单位。

在逻辑上,一个USB设备的功能划分是通过接口来完成的。比如说一个USB扬声器,可能会包括有两个接口:一个用于键盘控制,另外一个用于音频流传输。而

事实上,这种设备需要用到不同的两个驱动程序来操作,一个控制键盘,一个控制音频流。但也有例外,比如蓝牙设备,要求有两个接口,第一用于ACL跟

EVENT的传输,另外一个用于SCO链路,但两者通过一个驱动控制。在Linux上,接口使用struct

usb_interface来描述,以下是该结构体中比较重要的字段:

struct usb_host_interface *altsetting(注意不是usb_interface)

其实据我理解,他应该是每个接口的设置,虽然名字上有点奇怪。该字段是一个设置的数组(一个接口可以有多个设置),每个usb_host_interface都包含一套由struct usb_host_endpoint定义的端点配置。但这些配置次序是不定的。

unsigned num_altstting

可选设置的数量,即altsetting所指数组的元素个数。

struct usb_host_interface *cur_altsetting

当前活动的设置,指向altsetting数组中的一个。

int minor

当捆绑到该接口的USB驱动程序使用USB主设备号时,USB core分配的次设备号。仅在成功调用usb_register_dev之后才有效。

除了它可以用struct usb_host_config来描述之外,到现在为止,我对配置的了解不多。而整个USB设备则可以用struct usb_device来描述,但基本上只会用它来初始化函数的接口,真正用到的应该是我们之前所提到的自定义的一个结构体。

22424878_1

好,了解过USB一些规范细节之后,我们现在来看看Linux的驱动框架。事实上,Linux的设备驱动,特别是这种hotplug的USB设备驱动,会被编译成模块,然后在需要时挂在到内核。要写一个Linux的模块并不复杂,以一个helloworld为例:

#include

#include

MODULE_LICENSE(“GPL”);

static int hello_init(void)

{

printk(KERN_ALERT “Hello World!\n”);

return 0;

}

static int hello_exit(void)

{

printk(KERN_ALERT “GOODBYE!\n”);

}

module_init(hello_init);

module_exit(hello_exit);

这个简单的程序告诉大家应该怎么写一个模块,MODULE_LICENSE告诉内核该模块的

版权信息,很多情况下,用GPL或者BSD,或者两个,因为一个私有模块一般很难得到社区的帮助。module_init和module_exit用于向

内核注册模块的初始化函数和模块推出函数。如程序所示,初始化函数是hello_init,而退出函数是hello_exit。

另外,要编译一个模块通常还需要用到内核源码树种的makefile,所以模块的Makefile可以写成:

ifneq ($(KERNELRELEASE),)

obj-m:= hello.o#usb-dongle.o

else

KDIR:= /usr/src/linux-headers-$(shell uname -r)

BDIR:= $(shell pwd)

default:

$(MAKE) -C $(KDIR) M=$(PWD) modules

.PHONY: clean

clean:

make -C $(KDIR) M=$(BDIR) clean

endif

可以用insmod跟rmmod来验证模块的挂在跟卸载,但必须用root的身份登陆命令行,用普通用户加su或者sudo在Ubuntu上的测试是不行的。

下面我们来分析一下usb-skeleton的源码吧。这个范例程序可以在linux-2.6.17/drivers/usb下找到,其他版本的内核程序源码可能有所不同,但相差不大。大家可以先找到源码看一看,先有个整体印象。

之前已经提到,模块先要向内核注册初始化跟销毁函数:

static int __init usb_skel_init(void)

{

int result;

/* register this driver with the USB subsystem */

result = usb_register(&skel_driver);

if (result)

err("usb_register failed. Error number %d", result);

return result;

}

static void __exit usb_skel_exit(void)

{

/* deregister this driver with the USB subsystem */

usb_deregister(&skel_driver);

}

module_init (usb_skel_init);

module_exit (usb_skel_exit);

MODULE_LICENSE("GPL");

从代码开来,这个init跟exit函数的作用只是用来注册驱动程序,这个描述驱动程序的结

构体是系统定义的标准结构struct usb_driver,注册和注销的方法很简单,usb_register(struct

*usb_driver), usb_unregister(struct

*usb_driver)。那这个结构体需要做些什么呢?他要向系统提供几个函数入口,跟驱动的名字:

static struct usb_driver skel_driver = {

.name =       "skeleton",

.probe = skel_probe,

.disconnect = skel_disconnect,

.id_table =   skel_table,

};

从代码看来,usb_driver需要初始化四个东西:模块的名字skeleton,probe函数skel_probe,disconnect函数skel_disconnect,id_table。

在解释skel_driver各个成员之前,我们先来看看另外一个结构体。这个结构体的名字有开发人员自定义,它描述的是该驱动拥有的所有资源及状态:

struct usb_skel {

struct usb_device *    udev;              /* the usb device for this device */

struct usb_interface * interface;         /* the interface for this device */

struct semaphore   limit_sem;         /* limiting the number of writes in progress */

unsigned char *        bulk_in_buffer;        /* the buffer to receive data */

size_t             bulk_in_size;      /* the size of the receive buffer */

__u8          bulk_in_endpointAddr;  /* the address of the bulk in endpoint */

__u8          bulk_out_endpointAddr; /* the address of the bulk out endpoint */

struct kref        kref;

};

我们先来对这个usb_skel作个简单分析,他拥有一个描述usb设备的结构体udev,一个接口interface,用于并发访问控制的

semaphore(信号量)

limit_sem,用于接收数据的缓冲bulk_in_buffer及其尺寸bulk_in_size,然后是批量输入输出端口地址

bulk_in_endpointAddr、bulk_out_endpointAddr,最后是一个内核使用的引用计数器。他们的作用我们将在后面的代

码中看到。

我们在回过头来看看skel_driver。

Name用来告诉内核模块的名字是什么,这个注册之后有系统来使用,跟我们关系不大。

id_table用来告诉内核该模块支持的设备。Usb子系统通过设备的

production ID和vendor

ID的组合或者设备的class、subclass跟protocol的组合来识别设备,并调用相关的驱动程序作处理。我们可以看看这个id_table

到底是什么东西:

/* Define these values to match your devices */

#define USB_SKEL_VENDOR_ID  0xfff0

#define USB_SKEL_PRODUCT_ID 0xfff0

/* table of devices that work with this driver */

static struct usb_device_id skel_table [] = {

{ USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) },

{ }                    /* Terminating entry */

};

MODULE_DEVICE_TABLE (usb, skel_table);

MODULE_DEVICE_TABLE的第一个参是设备的类型,如果是USB设备,那自然是usb(如果是PCI设备,那将是pci,这两个子系统用同

一个宏来注册所支持的设备。这设计PCI设备的驱动了,在此先不深究)。后面一个参数是设备表,这个设备表的最后一个元素是空的,用于标识结束。代码定义

了USB_SKEL_VENDOR_ID是0xfff0,USB_SKEL_PRODUCT_ID是0xfff0,也就是说,当有一个设备接到集线器

时,usb子系统就会检查这个设备的vendor ID和product

ID,如果它们的值是0xfff0时,那么子系统就会调用这个skeleton模块作为设备的驱动。

probe是usb子系统自动调用的一个函数,有USB设备接到硬件集线器时,usb子系统

会根据production ID和vendor

ID的组合或者设备的class、subclass跟protocol的组合来识别设备调用相应驱动程序的probe(探测)函数,对于skeleton

来说,就是skel_probe。系统会传递给探测函数一个usb_interface *跟一个struct usb_device_id

*作为参数。他们分别是该USB设备的接口描述(一般会是该设备的第0号接口,该接口的默认设置也是第0号设置)跟它的设备ID描述(包括Vendor

ID、Production ID等)。Probe函数比较长,我们分段来分析这个函数:

dev->udev = usb_get_dev(interface_to_usbdev(interface));

dev->interface = interface;

在初始化了一些资源之后,我们可以看到第一个关键的函数调用——

interface_to_usbdev。他同uo一个usb_interface来得到该接口所在设备的设备描述结构。本来,要得到一个

usb_device只要用interface_to_usbdev就够了,但因为要增加对该usb_device的引用计数,我们应该在做一个

usb_get_dev的操作,来增加引用计数,并在释放设备时用usb_put_dev来减少引用计数。这里要解释的是,该引用计数值是对该

usb_device的计数,并不是对本模块的计数,本模块的计数要由kref来维护。所以,probe一开始就有初始化kref。事实

上,kref_init操作不单只初始化kref,还将其置设成1。所以在出错处理代码中有kref_put,它把kref的计数减1,如果kref计数

已经为0,那么kref会被释放。Kref_put的第二个参数是一个函数指针,指向一个清理函数。注意,该指针不能位空,或者kfree。该函数会在最

后一个对kref的引用释放时被调用(如果我的理解不准确,请指正)。下面是内核源码中的一段注释及代码:

/**

* kref_put - decrement refcount for object.

* @kref: object.

* @release: pointer to the function that will clean up the object when the

*        last reference to the object is released.

*        This pointer is required, and it is not acceptable to pass kfree

*        in as this function.

*

* Decrement the refcount, and if 0, call release().

* Return 1 if the object was removed, otherwise return 0.  Beware, if this

* function returns 0, you still can not count on the kref from remaining in

* memory.  Only use the return value if you want to see if the kref is now

* gone, not present.

*/

int kref_put(struct kref *kref, void (*release)(struct kref *kref))

{

WARN_ON(release == NULL);

WARN_ON(release == (void (*)(struct kref *))kfree);

/*

* if current count is one, we are the last user and can release object

* right now, avoiding an atomic operation on 'refcount'

*/

if ((atomic_read(&kref->refcount) == 1) ||

(atomic_dec_and_test(&kref->refcount))) {

release(kref);

return 1;

}

return 0;

}

当我们执行打开操作时,我们要增加kref的计数,我们可以用kref_get,来完成。所有对struct kref的操作都有内核代码确保其原子性。

得到了该usb_device之后,我们要对我们自定义的usb_skel各个状态跟资源作

初始化。这部分工作的任务主要是向usb_skel注册该usb设备的端点。这里可能要补充以下一些关于

usb_interface_descriptor的知识,但因为内核源码对该结构体的注释不多,所以只能靠个人猜测。在一个

usb_host_interface结构里面有一个usb_interface_descriptor叫做desc的成员,他应该是用于描述该

interface的一些属性,其中bNubEndpoints一个8位(b for

byte)的数字,他代表了该接口的端点数。Probe然后遍历所有的端点,检查他们的类型跟方向,注册到usb_skel中。

/* set up the endpoint information */

/* use only the first bulk-in and bulk-out endpoints */

iface_desc = interface->cur_altsetting;

for (i = 0; i desc.bNumEndpoints; ++i) {

endpoint = &iface_desc->endpoint.desc;

if (!dev->bulk_in_endpointAddr &&

((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK)

== USB_DIR_IN) &&

((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)

== USB_ENDPOINT_XFER_BULK)) {

/* we found a bulk in endpoint */

buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);

dev->bulk_in_size = buffer_size;

dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;

dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);

if (!dev->bulk_in_buffer) {

err("Could not allocate bulk_in_buffer");

goto error;

}

}

if (!dev->bulk_out_endpointAddr &&

((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK)

== USB_DIR_OUT) &&

((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)

== USB_ENDPOINT_XFER_BULK)) {

/* we found a bulk out endpoint */

dev->bulk_out_endpointAddr = endpoint->bEndpointAddress;

}

}

if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) {

err("Could not find both bulk-in and bulk-out endpoints");

goto error;

}

接下来的工作是向系统注册一些以后会用的的信息。首先我们来说明一下usb-

set_intfdata(),他向内核注册一个data,这个data结构可以是任意的,在这段程序用向内核注册了一个usb_skel结构,就是我们

刚刚看到的被初始化的那个,这个data可以在以后用usb_get_intfdata来得到。

usb_set_intfdata(interface, dev);

retval = usb_register_dev(interface, &skel_class);

然后我们向这个interface注册一个skel_class结构。这个结构又是什么?我们就来看看这到底是个什么东西:

static struct usb_class_driver skel_class = {

.name =       "skel%d",

.fops =       &skel_fops,

.minor_base = USB_SKEL_MINOR_BASE,

};

它其实是一个系统定义的结构,里面包含了一名字、一个文件操作结构体还有一个次设备号的基准

值。事实上它定义真正完成对设备IO操作的函数。所以他的核心内容应该是skel_fops。这里补充一些我个人的估计:因为usb设备可以有多个

interface,每个interface所定义的IO操作可能不一样,所以想系统注册的usb_class_driver要求注册到某一个

interface,因此usb_register_dev的第一个参数是interface,而第二个参数就是某一个

usb_class_driver。通常情况下,linux系统用主设备好来识别某类设备的的驱动程序,用次设备号管理识别具体的设备,驱动程序可以依照

次设备好来区分不同的设备,所以,这里的次设备好其实是用来管理不同的interface的,但由于这个范例只有一个interface,在代码上无法求

证这个猜想。

static struct file_operations skel_fops = {

.owner = THIS_MODULE,

.read =       skel_read,

.write = skel_write,

.open =       skel_open,

.release =    skel_release,

};

这个文件操作结构中定义了对设备的读写、打开释放(USB设备通常使用这个术语release)。他们都是函数指针,分别指向skel_read、skel_write、skel_open、skel_release这四个函数,这四个函数应该有开发人员自己实现。

当设备被拔出集线器时,usb子系统会自动地调用disconnect,他做的事情不多,最重要的是注销class_driver(交还次设备号)和interface的data:

dev = usb_get_intfdata(interface);

usb_set_intfdata(interface, NULL);

/* give back our minor */

usb_deregister_dev(interface, &skel_class);

然后他会用kref_put(&dev->kref, skel_delete)进行清理,kref_put的细节参见前文。

到目前为止,我们已经分析完usb子系统要求的各个主要操作,下一部分我们在讨论一下对USB设备的IO操作。

说的usb子系统的IO操作,不得不说usb request

block,简称urb。事实上,可以打一个这样的比喻,usb总线就像一条高速公路,货物、人流之类的可以看成是系统与设备交互的数据,而urb就可以

看成是交通工具。在一开始对USB规范细节的介绍,我们就说过USB的endpoint有4种不同类型,于是能在这条高速公路上流动的数据也就有四种。但

对车是没有要求的,urb可以运载四种数据,不过你要先告诉司机你要运什么,目的地是什么。我们现在就看看struct

urb的具体内容。它的内容很多,为了不让我的理解误导各位,大家最好还是看一看内核源码的注释,具体内容参见源码树下include/linux

/usb.h。

在这里我们重点介绍程序中出现的几个关键字段:

struct usb_device *dev

urb所发送的目标设备。

unsigned int pipe

一个管道号码,该管道记录了目标设备的端点以及管道的类型。每个管道只有一种类型和一个方向,它与他的目标设备的端点向对应,我们可以通过以下几个函数来获得管道号并设置管道类型:

unsigned int usb_sndctrlpipe(struct usb_device *dev, unsigned int endpoint)

把指定USB设备指定端点设置为一个控制OUT端点。

unsigned int usb_rcvctrlpipe(struct usb_device *dev, unsigned int endpoint)

把指定USB设备指定端点设置为一个控制IN端点。

unsigned int usb_sndbulkpipe(struct usb_device *dev, unsigned int endpoint)

把指定USB设备指定端点设置为一个批量OUT端点。

unsigned int usb_rcvbulkpipe(struct usb_device *dev, unsigned int endpoint)

把指定USB设备指定端点设置为一个批量OUT端点。

unsigned int usb_sndintpipe(struct usb_device *dev, unsigned int endpoint)

把指定USB设备指定端点设置为一个中断OUT端点。

unsigned int usb_rcvintpipe(struct usb_device *dev, unsigned int endpoint)

把指定USB设备指定端点设置为一个中断OUT端点。

unsigned int usb_sndisocpipe(struct usb_device *dev, unsigned int endpoint)

把指定USB设备指定端点设置为一个等时OUT端点。

unsigned int usb_rcvisocpipe(struct usb_device *dev, unsigned int endpoint)

把指定USB设备指定端点设置为一个等时OUT端点。

unsigned int transfer_flags

当不使用DMA时,应该transfer_flags |= URB_NO_TRANSFER_DMA_MAP(按照代码的理解,希望没有错)。

Int status

当一个urb把数据送到设备时,这个urb会由系统返回给驱动程序,并调用驱动程序的urb完成回调函数处理。这时,status记录了这次数据传输的有关状态,例如传送成功与否。成功的话会是0。

要能够运货当然首先要有车,所以第一步当然要创建urb:

struct urb *usb_alloc_urb(int isoc_packets, int mem_flags);

第一个参数是等时包的数量,如果不是乘载等时包,应该为0,第二个参数与kmalloc的标志相同。

要释放一个urb可以用:

void usb_free_urb(struct urb *urb);

要承载数据,还要告诉司机目的地信息跟要运的货物,对于不同的数据,系统提供了不同的函数,对于中断urb,我们用

void usb_fill_int_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,

void *transfer_buffer, int buffer_length,

usb_complete_t complete, void *context, int interval);

这里要解释一下,transfer_buffer是一要送/收的数据的缓冲,buffer_length是它的长度,complete是urb完成回调函数的入口,context有用户定义,可能会在回调函数中使用的数据,interval就是urb被调度的间隔。

对于批量urb和控制urb,我们用:

void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,

void *transfer_buffer, int buffer_length, usb_complete_t complete,

void *context);

void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,

unsigned char* setup_packet,void *transfer_buffer,

int buffer_length, usb_complete_t complete,void *context);

控制包有一个特殊参数setup_packet,它指向即将被发送到端点的设置数据报的数据。

对于等时urb,系统没有专门的fill函数,只能对各urb字段显示赋值。

有了汽车,有了司机,下一步就是要开始运货了,我们可以用下面的函数来提交urb

int usb_submit_urb(struct urb *urb, int mem_flags);

mem_flags有几种:GFP_ATOMIC、GFP_NOIO、GFP_KERNEL,通常在中断上下文环境我们会用GFP_ATOMIC。

当我们的卡车运货之后,系统会把它调回来,并调用urb完成回调函数,并把这辆车作为函数传递给驱动程序。我们应该在回调函数里面检查status字段,以确定数据的成功传输与否。下面是用urb来传送数据的细节。

/* initialize the urb properly */

usb_fill_bulk_urb(urb, dev->udev,

usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr),

buf, writesize, skel_write_bulk_callback, dev);

urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

/* send the data out the bulk port */

retval = usb_submit_urb(urb, GFP_KERNEL);

这里skel_write_bulk_callback就是一个完成回调函数,而他做的主要事情就是检查数据传输状态和释放urb:

dev = (struct usb_skel *)urb->context;

/* sync/async unlink faults aren't errors */

if (urb->status &&

!(urb->status == -ENOENT ||

urb->status == -ECONNRESET ||

urb->status == -ESHUTDOWN)) {

dbg("%s - nonzero write bulk status received: %d",

__FUNCTION__, urb->status);

}

/* free up our allocated buffer */

usb_buffer_free(urb->dev, urb->transfer_buffer_length,

urb->transfer_buffer, urb->transfer_dma);

事实上,如果数据的量不大,那么可以不一定用卡车来运货,系统还提供了一种不用urb的传输方式,而usb-skeleton的读操作正是采用这种方式实现:

/* do a blocking bulk read to get data from the device */

retval = usb_bulk_msg(dev->udev,

usb_rcvbulkpipe(dev->udev, dev->bulk_in_endpointAddr),

dev->bulk_in_buffer,

min(dev->bulk_in_size, count),

&bytes_read, 10000);

/* if the read was successful, copy the data to userspace */

if (!retval) {

if (copy_to_user(buffer, dev->bulk_in_buffer, bytes_read))

retval = -EFAULT;

else

retval = bytes_read;

}

程序使用了usb_bulk_msg来传送数据,它的原型如下:

int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,void *data,

int len, int *actual length, int timeout)

这个函数会阻塞等待数据传输完成或者等到超时,data是输入/输出缓冲,len是它的大小,actual length是实际传送的数据大小,timeout是阻塞超时。

对于控制数据,系统提供了另外一个函数,他的原型是:

Int usb_contrl_msg(struct usb_device *dev, unsigned int pipe, __u8 request,

__u8 requesttype, __u16 value, __u16 index, void *data,

__u16 size, int timeout);

Request是控制消息的USB请求值、requesttype是控制消息的USB请求类型,value是控制消息的USB消息值,index是控制消息的USB消息索引。具体是什么,暂时不是很清楚,希望大家提供说明。

至此,Linux下的USB驱动框架分析基本完成了。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/246908?site
推荐阅读
相关标签
  

闽ICP备14008679号