当前位置:   article > 正文

大模型应用之langchain入门和代码实战_langchain 知识库 代码

langchain 知识库 代码

简单介绍

LangChain 是一个开源的语言模型集成框架,旨在简化使用大型语言模型(LLM)创建应用程序的过程。
利用它可以让开发者使用语言模型来实现各种复杂的任务,例如文本到图像的生成、文档问答、聊天机器人
调用特定的SaaS服务等等。

OpenAi接口

1,/v1/models 用来返回可用的模型列表
2,/v1/completions 给定提示,模型将返回一个或多个预测完成,还可以返回每个位置的替代令牌的概率。
3,/v1/chat/completions 给定聊天对话,模型将返回聊天完成响应。角色有system assistant user

LangChain 中主要支持的组件如下所述:

Models:各种类型的模型和模型集成,比如OpenAI 的 ChatGPT。

import os
os.environ.setdefault("OPENAI_API_BASE", "http://llm.demo.haizhi.com/v1")
os.environ.setdefault("OPENAI_API_KEY", "EMPTY")

from langchain.llms import OpenAI

#llm = OpenAI(temperature=0, model_name="Baichuan2-13B-Chat")  # model_name="text-davinci-003" 这里使用OpenAI接口调用LLM模型
llm = OpenAI(temperature=0, model_name="ChatGLM2-6B")  # model_name="text-davinci-003" 这里使用OpenAI接口调用LLM模型
text = "你是个诗人,我写个劝学的打油诗吧"
print(llm(text))

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

Prompts:提示管理、提示优化和提示序列化,通过提示微调模型的语义理解。

import os
os.environ.setdefault("OPENAI_API_BASE", "http://llm.demo.haizhi.com/v1")
os.environ.setdefault("OPENAI_API_KEY", "EMPTY")

from langchain.llms import OpenAI

from langchain import PromptTemplate

template = """Question: {question}

Let's think step by step.

Answer: """

#llm = OpenAI(temperature=0, model_name="Baichuan2-13B-Chat")
llm = OpenAI(temperature=0, model_name="ChatGLM2-6B")

prompt = PromptTemplate(template=template, input_variables=["question"])

final_promot = prompt.format(question="请告诉我该怎么学习大模型?")

print(llm(final_promot))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

Memory:用来保存和模型交互时的上下文状态。
Indexes:用来结构化文档,以便和模型交互。
Chains:一系列对各种组件的调用。

import os
os.environ.setdefault("OPENAI_API_BASE", "http://llm.demo.haizhi.com/v1")
os.environ.setdefault("OPENAI_API_KEY", "EMPTY")

from langchain.llms import OpenAI
from langchain import PromptTemplate
from langchain import LLMChain

template = """Question: {question}

Let's think step by step.

Answer: """

#llm = OpenAI(temperature=0, model_name="Baichuan2-13B-Chat")
llm = OpenAI(temperature=0, model_name="ChatGLM2-6B")

prompt = PromptTemplate(template=template, input_variables=["question"])

# final_promot = prompt.format(question="请告诉我该怎么学习大模型?")

# print(llm(final_promot))

llm_chain = LLMChain(prompt=prompt, llm=llm)

question = "请告诉我该怎么学习向量库?"

print(llm_chain.run(question))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

Agents:决定模型采取哪些行动,执行并且观察流程,直到完成为止。

import os
os.environ.setdefault("OPENAI_API_BASE", "http://llm.demo.haizhi.com/v1")
os.environ.setdefault("OPENAI_API_KEY", "EMPTY")
from langchain.llms import OpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains import SimpleSequentialChain

#llm = OpenAI(temperature=0, model_name="Chinese-Alpaca-2-7B-ywj1016")
llm = OpenAI(temperature=0, model_name="ChatGLM2-6B")

# 第一个链模版内容
template1 = "根据用户的输入的描述推荐一个适合的地区,用户输入: {value}"
prompt_template1 = PromptTemplate(input_variables=["value"], template=template1)
# 构建第一个链
chain1 = LLMChain(llm=llm, prompt=prompt_template1)

# 第二个链模版内容
template2 = "根据用户的输入的地区推荐该地区的美食,用户输入: {value}"
prompt_template2 = PromptTemplate(input_variables=["value"], template=template2)
# 构建第二个链
chain2 = LLMChain(llm=llm, prompt=prompt_template2)

# 将链组装起来
overall_chain = SimpleSequentialChain(chains=[chain1, chain2], verbose=True)

# 运行链
review = overall_chain.run("北京")
print('结果:', review)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

参考 https://github.com/langchain-ai/langchain
参考 https://github.com/chatchat-space/Langchain-Chatchat

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号