当前位置:   article > 正文

YOLO 系目标检测算法家族全景图!_achieving domain generalization for underwater obj

achieving domain generalization for underwater object detection by domain mi

format,png

YOLO目标检测算法诞生于2015年6月,从出生的那一天起就是“高精度、高效率、高实用性”目标检测算法的代名词。

在原作者Joseph Redmon博士手中YOLO经历了三代到YOLOv3,今年初Joseph Redmon宣告退出计算机视觉研究界后,YOLOv4、YOLOv5相继而出,且不论谁是正统,这YOLO算法家族在创始人拂袖而出后依然热闹非凡。

本文带领大家细数在此名门之中自带“YOLO”的算法,总计 23 项工作,它们有的使YOLO更快,有的使YOLO更精准,有的扩展到了3D点云、水下目标检测、有的则在FPGA、CPU、树莓派上大显身手,甚至还有的进入了语音处理识别领域。

而几乎所有YOLO系算法都力图保持高精度、高效率、高实用性,这也许就是工业界偏爱YOLO的理由吧!

YOLOv1  开山鼻祖之作

You Only Look Once: Unified, Real-Time Object Detection

作者:Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi

单位:华盛顿大学;Allen Institute for AI;FAIR

论文:https://arxiv.org/abs/1506.02640

引用 | 10222

主页:https://pjreddie.com/darknet/yolo/

时间:2015年6月8日

标准版本的YOLO在Titan X 的 GPU 上能达到 45 FPS。更快的 Fast YOLO 检测速度可以达到 155 FPS。

format,png

YOLOv2

YOLO9000: Better, Faster, Stronger

作者:Joseph Redmon, Ali Farhadi

单位:华盛顿大学;Allen Institute for AI

论文: https://arxiv.org/abs/1612.08242

引用 | 5168

主页:https://pjreddie.com/darknet/yolo/

时间:2016年12月25日

在 YOLO 基础上,保持原有速度的同时提升精度得到YOLOv2,让预测变得更准确(Better),更快速(Faster)。

通过联合训练策略,可实现9000多种物体的实时检测,总体mAP值为19.7。

format,png

YOLOv3

YOLOv3: An Incremental Improvement

作者:Joseph Redmon, Ali Farhadi

单位:华盛顿大学

论文:https://arxiv.org/abs/1804.02767

引用 | 3363

主页:https://pjreddie.com/darknet/yolo/

Star | 18.3K

时间:2018年4月8日

在320×320 YOLOv3运行22.2ms,28.2 mAP,像SSD一样准确,但速度快三倍。在Titan X上,它在51 ms内实现了57.9的AP50,与RetinaNet在198 ms内的57.5 AP50相当,性能相似但速度快3.8倍。

YOLOv4 目标检测tricks集大成者

YOLOv4: Optimal Speed and Accuracy of Object Detection

作者:Alexey Bochkovskiy;Chien-Yao Wang;Hong-Yuan Mark Liao

单位:(中国台湾)中央研究院

论文:https://arxiv.org/pdf/2004.10934v1.pdf

引用 | 17

代码:https://github.com/AlexeyAB/darknet

Star | 11.9K

时间:2020年4月24

解读:YOLOv4来了!COCO 43.5 AP,65FPS!实现速度与精度的最优平衡

在MS COCO 数据集 实现 43.5% AP (65.7% AP50 ), 速度也更快了,在Tesla V100 GPU上 ∼65 FPS!

format,png

YOLOv5 

2020年6月25日,Ultralytics发布了YOLOV5 的第一个正式版本,号称其性能与YOLO V4不相伯仲,同样也是现今最先进的目标检测技术,并在推理速度上是目前最强。

论文:无

代码:https://github.com/ultralytics/yolov5

Star | 3.5K

解读:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/140367
推荐阅读
相关标签
  

闽ICP备14008679号