赞
踩
YOLO目标检测算法诞生于2015年6月,从出生的那一天起就是“高精度、高效率、高实用性”目标检测算法的代名词。
在原作者Joseph Redmon博士手中YOLO经历了三代到YOLOv3,今年初Joseph Redmon宣告退出计算机视觉研究界后,YOLOv4、YOLOv5相继而出,且不论谁是正统,这YOLO算法家族在创始人拂袖而出后依然热闹非凡。
本文带领大家细数在此名门之中自带“YOLO”的算法,总计 23 项工作,它们有的使YOLO更快,有的使YOLO更精准,有的扩展到了3D点云、水下目标检测、有的则在FPGA、CPU、树莓派上大显身手,甚至还有的进入了语音处理识别领域。
而几乎所有YOLO系算法都力图保持高精度、高效率、高实用性,这也许就是工业界偏爱YOLO的理由吧!
YOLOv1 开山鼻祖之作
You Only Look Once: Unified, Real-Time Object Detection
作者:Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi
单位:华盛顿大学;Allen Institute for AI;FAIR
论文:https://arxiv.org/abs/1506.02640
引用 | 10222
主页:https://pjreddie.com/darknet/yolo/
时间:2015年6月8日
标准版本的YOLO在Titan X 的 GPU 上能达到 45 FPS。更快的 Fast YOLO 检测速度可以达到 155 FPS。
YOLOv2
YOLO9000: Better, Faster, Stronger
作者:Joseph Redmon, Ali Farhadi
单位:华盛顿大学;Allen Institute for AI
论文: https://arxiv.org/abs/1612.08242
引用 | 5168
主页:https://pjreddie.com/darknet/yolo/
时间:2016年12月25日
在 YOLO 基础上,保持原有速度的同时提升精度得到YOLOv2,让预测变得更准确(Better),更快速(Faster)。
通过联合训练策略,可实现9000多种物体的实时检测,总体mAP值为19.7。
YOLOv3
YOLOv3: An Incremental Improvement
作者:Joseph Redmon, Ali Farhadi
单位:华盛顿大学
论文:https://arxiv.org/abs/1804.02767
引用 | 3363
主页:https://pjreddie.com/darknet/yolo/
Star | 18.3K
时间:2018年4月8日
在320×320 YOLOv3运行22.2ms,28.2 mAP,像SSD一样准确,但速度快三倍。在Titan X上,它在51 ms内实现了57.9的AP50,与RetinaNet在198 ms内的57.5 AP50相当,性能相似但速度快3.8倍。
YOLOv4 目标检测tricks集大成者
YOLOv4: Optimal Speed and Accuracy of Object Detection
作者:Alexey Bochkovskiy;Chien-Yao Wang;Hong-Yuan Mark Liao
单位:(中国台湾)中央研究院
论文:https://arxiv.org/pdf/2004.10934v1.pdf
引用 | 17
代码:https://github.com/AlexeyAB/darknet
Star | 11.9K
时间:2020年4月24
解读:YOLOv4来了!COCO 43.5 AP,65FPS!实现速度与精度的最优平衡
在MS COCO 数据集 实现 43.5% AP (65.7% AP50 ), 速度也更快了,在Tesla V100 GPU上 ∼65 FPS!
YOLOv5
2020年6月25日,Ultralytics发布了YOLOV5 的第一个正式版本,号称其性能与YOLO V4不相伯仲,同样也是现今最先进的目标检测技术,并在推理速度上是目前最强。
论文:无
代码:https://github.com/ultralytics/yolov5
Star | 3.5K
解读:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。