赞
踩
对一个智能业务对话系统而言,语言理解NLU及Policies是其系统内核的两大基石。Rasa团队发布的最重磅级的两篇论文DIET: Lightweight Language Understanding for Dialogue Systems及Dialogue Transformers是其基于在业界落地场景的多年探索而总结出来的解决NLU和Policies最核心的成果结晶: 其中DIET是Intent识别和Entity信息抽取的统一框架,而基于Dialogue Transformers的Transformer Embedding Dialogue (TED)是面向多轮业务对话信息处理和对话Response技术框架。DIET和TED作为Rasa内核已经经过很多版本的迭代优化,即使Rasa 3.x最新一代架构中依然可以看到DIET和TED的核心位置:
可以这么说,掌握这两篇论文是掌握Rasa精髓及背后设计机制的核心之所在。所以星空对话机器人推出了业务对话机器人Rasa核心算法DIET及TED论文内幕详解课程,以抽丝剥茧的方式来逐句解读这两篇论文中蕴含的一切架构思想、内幕机制、实验分析、及最佳实践等所有的密码,以帮助对基于Transformer的对话机器人感兴趣的朋友掌握Rasa内核精髓。
为了更有效的帮助学员达到从模型算法、架构设计、源码实现等角度融汇贯贯通当今工业级最成功的业务对话机器人平台Rasa,除了在课程中逐行解析Rasa的核心TED Policy近2130行源码及DIET近1825行源码外,课程中还增加了Rasa Internals解密之框架核心graph.py源码完整解析及测试中GraphNode源码逐行解析及Testing分析、GraphModelConfiguration、ExecutionContext、GraphNodeHook源码解析、GraphComponent源码回顾及其应用源码。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。