赞
踩
Matlab实现KPCA-ISSA-LSSVM基于核主成分分析和改进麻雀优化算法优化最小二乘支持向量机分类预测(可用于故障诊断等方面)MATLAB代码,运行环境matlab2018及以上。
❶含LSSVM、SSA-LSSVM、ISSA-LSSVM、KPCA-ISSA-LSSVM,四个模型的对比。经过降维后利用改进蜣螂算法优化LSSVM参数为:sig,gamma。
❷改进策略:levy改进麻雀优化算法可提高收敛率,促进算法寻优。
❸可出分类效果图,迭代优化图,混淆矩阵
❹代码中文注释清晰,质量极高
❺赠送数据集,可以直接运行源程序。
代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
function [Y, eigVec, eigVal] = kPCA(p_train, dim, type, para)
%% 获取样本数目
N = size(p_train, 1);
%% 核主成分分析
K0 = kernel(p_train, type, para);
oneN = ones(N, N) / N;
%% 特征值分析
[V, D] = eig(K / N);
eigVal = diag(D);
[~, idx] = sort(eigVal, 'descend');
eigVal = eigVal(idx);
%% 特征向量分析
eigVec = V(:, idx);
norm_eigVector = sqrt(sum(eigVec .^ 2));
eigVec = eigVec ./ repmat(norm_eigVector, size(eigVec, 1), 1);
%% 降维
eigVec = eigVec(:, 1: dim);
Y = K0 * eigVec;
end
%% 参数设置
%% 数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);
% %% 数据排序
% [T_train, index_1] = sort(T_train);
% [T_test , index_2] = sort(T_test );
%
% T_sim1 = T_sim1(index_1);
% T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1 == T_train))/M * 100 ;
error2 = sum((T_sim2 == T_test)) /N * 100 ;
%% 绘图
figure()
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
grid
figure
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid
%% 混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。