赞
踩
MATLAB实现:MATLAB中求解线性规划的命令为:
[ x,fval ]=linprog(f,A,b)
[ x,fval ]=linprog(f,A,b,Aeq,beq)
[ x,fval ]=linprog(f,A,b,Aeq,beq,lb,ub)
其中:返回的x为决策向量的取值; 返回的fval是目标函数的最大值;f为价值向量;A和b对应的是线性不等式约束;Aeq和beq对应的是线性等式约束;lb和ub分别对应的是决策向量的下界向量和上界向量。
eg1:
(1)化为Matlab标准型,即
(2)求解的Matlab程序如下:
f=[-2,-3,5]'
A=[-2,5,-1;1,3,1]; b=[-10;12];
Aeq=[1,1,1]; beq=7;
[x,fval]=linprog(f,A,b,Aeq,beq,zeros(3,1));
x
fval=-fval
这里的zeros(3,1)是为了产生3行1列的全0矩阵,对应着x1,x2,x3均大于等于0的约束条件。
eg2:可以转化为线性规划的问题
可进一步把模型改写为:
参考链接
应用:运输问题(产销平衡)、指派问题(匈牙利算法)、对偶理论与灵敏度分析、投资的收益和风险
MATLAB代码实现:
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
1.fun为目标函数
2.x0为初始值
3.A是不等式约束AX<=b的系数矩阵
4.b是不等式约束AX<=b的常数项
5.Aeq是等式约束AeqX=beq的系数矩阵,
6.beq是等式约束AeqX=beq的常数项,
7.lb是X的下限,
8.ub是X的上限,
9.nonlcon为非线性不等式约束
10.option为设置fmincon的参数
eg:
形如上述这样的就是非线性规划:
function f=fun1(x) f=x(1)^2+x(2)^2+8; function [g,h]=fun2(x) g=-x(1)^2+x(2); h=-x(1)-x(2)^2+2;%约束等式 options=optimset; [x,y]=fmincon('fun1',rand(2,1),[],[],[],[],zeros(2,1),[],'fun2',options) x = 1.0000 1.0000 y = 10.0000
参考链接
具体问题具体分析
第一 个符号 X 表示顾客到达流或顾客到达间隔时间的分布;
第二个符号Y 表示服务时间的 分布;
第三个符号Z 表示服务台数目;
第四个符号 A是系统容量限制;
第五个符号B 是 顾客源数目;
第六个符号C 是服务规则,如先到先服务 FCFS,后到先服务 LCFS 等。
并约定,如略去后三项,即指X/Y/Z/∞/∞/FCFS的情形。我们只讨论先到先服务 FCFS 的情形,所以略去第六项。
表示顾客到达间隔时间和服务时间的分布的约定符号为:
M —指数分布(M 是 Markov 的字头,因为指数分布具有无记忆性,即 Markov 性);
D—确定型(Deterministic);
Ek —k 阶爱尔朗(Erlang)分布;
G —一般(general)服务时间的分布;
GI —一般相互独立(General Independent)的时间间隔的分布。
例如,M/M/1表示相继到达间隔时间为指数分布、服务时间为指数分布、单服务台、等待制系统。
D/M/c/表示确定的到达时间、服务时间为指数分布、c个平行服务台(但顾客是一队)的模型。
(i)平均队长:指系统内顾客数(包括正被服务的顾客与排队等待服务的顾客)的数学期望,记作Ls 。
(ii)平均排队长:指系统内等待服务的顾客数的数学期望,记作 Lq 。
(iii)平均逗留时间:顾客在系统内逗留时间(包括排队等待的时间和接受服务的时间)的数学期望,记作Ws 。
(iv)平均等待时间:指一个顾客在排队系统中排队等待时间的数学期望,记作Wq 。
(v)平均忙期:指服务机构连续繁忙时间(顾客到达空闲服务机构起,到服务机构再次空闲止的时间)长度的数学期望,记为 Tb
(i)建立递阶层次结构模型;
(ii)构造出各层次中的所有判断矩阵;
(iii)层次单排序及一致性检验;
(iv)层次总排序及一致性检验。
(i)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
(ii)中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。
(iii)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。每一层次中各元素所支配的元素一般不要超过 9 个。这是因为支配的元素过多会给两两比较判断带来困难。
简介:多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标 招标、产业 部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组( ( 有限个) ) 备选方案进行排序或择优.它主要由两部分组成:
(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值( ( 属性值主要有三种形式:实数、区间数和语言) ) .其中,属性权重的确定是多属性决策中的一个重要研究内容;
(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优.
###主成分分析法
简介:主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
简介:按照信息论基本原理的解释,信息是系统有序程度的一个度量,熵是系统无序程度的一个度量;如果指标的信息熵越小,该指标提供的信息量越大,在综合评价中所起作用理当越大,权重就应该越高。因此,可利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据。
插值方法:
几种基本的、常用的插值:拉格朗日多项式插值、牛顿插值、分段线性插值、Hermite 插值和三次样条插值。
曲线拟合的线性最小二乘法(线性最小二乘法):
最小二乘优化(lsqlin 函数、lsqcurvefit 函数、lsqnonlin 函数、lsqnonneg 函数)
(i)建立因变量 y 与自变量 x1,x2,……,xm之间的回归模型(经验公式);
(ii)对回归模型的可信度进行检验;
(iii)判断每个自变量xi=(i=1,2,……,m)对 y 的影响是否显著;
(iv)诊断回归模型是否适合这组数据;
(v)利用回归模型对 y 进行预报或控制。
- 根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。
- 找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等)。
- 运用这些规律列出方程和定解条件。
(i)按规律直接列方程
在数学、力学、物理、化学等学科中许多自然现象所满足的规律已为人们所熟悉,并直接由微分方程所描述。如牛顿第二定律、放射性物质的放射性规律等。我们常利用这些规律对某些实际问题列出微分方程。
(ii)微元分析法与任意区域上取积分的方法
自然界中也有许多现象所满足的规律是通过变量的微元之间的关系式来表达的。对于这类问题,我们不能直接列出自变量和未知函数及其变化率之间的关系式,而是通过微元分析法,利用已知的规律建立一些变量(自变量与未知函数)的微元之间的关系式,然后再通过取极限的方法得到微分方程,或等价地通过任意区域上取积分的方法来建立微分方程。
(iii)模拟近似法
在生物、经济等学科中,许多现象所满足的规律并不很清楚而且相当复杂,因而需要根据实际资料或大量的实验数据,提出各种假设。在一定的假设下,给出实际现象所满足的规律,然后利用适当的数学方法列出微分方程。在实际的微分方程建模过程中,也往往是上述方法的综合应用。不论应用哪种方法,通常要根据实际情况,作出一定的假设与简化,并要把模型的理论或计算结果与实际情况进行对照验证,以修改模型使之更准确地描述实际问题并进而达到预测预报的目的。
简介:马尔可夫链的定义
现实世界中有很多这样的现象:某一系统在已知现在情况的条件下,系统未来时刻的情况只与现在有关,而与过去的历史无直接关系。比如,研究一个商店的累计销售额,如果现在时刻的累计销售额已知,则未来某一时刻的累计销售额与现在时刻以前的任一时刻累计销售额无关。上节中的几个例子也均属此类。描述这类随机现象的数学模型称为马氏模型。
简介:时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列。分析时间序列的方法构成数据分析的一个重要领域,即时间序列分析。
时间序列根据所研究的依据不同,可有不同的分类。
1.按所研究的对象的多少分,有一元时间序列和多元时间序列。
2.按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。
3.按序列的统计特性分,有平稳时间序列和非平稳时间序列。如果一个时间序列的概率分布与时间 t 无关,则称该序列为严格的(狭义的)平稳时间序列。如果序列的一、二阶矩存在,而且对任意时刻 t 满足:
(1)均值为常数
(2)协方差为时间间隔 τ 的函数。
则称该序列为宽平稳时间序列,也叫广义平稳时间序列。我们以后所研究的时间序列主要是宽平稳时间序列。
4.按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。
简介:模糊是指客观事物差异的中间过渡中的“不分明性”或“亦此亦彼性”。如高个子与矮个子、年轻人与老年人、热水与凉水、环境污染严重与不严重等。在决策中,也有这种模糊的现象,如选举一个好干部,但怎样才算一个好干部?好干部与不好干部之间没有绝对分明和固定不变的界限。这些现象很难用经典的数学来描述。
简介:客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。
简介:将认识对象进行分类是人类认识世界的一种重要方法,比如有关世界的时间进程的研究,就形成了历史学,也有关世界空间地域的研究,则形成了地理学。又如在生物学中,为了研究生物的演变,需要对生物进行分类,生物学家根据各种生物的特征,将它们归属于不同的界、门、纲、目、科、属、种之中。事实上,分门别类地对事物进行研究,要远比在一个混杂多变的集合中更清晰、明了和细致,这是因为同一类事物会具有更多的近似特性。在企业的经营管理中,为了确定其目标市场,首先要进行市场细分。因为无论一个企业多么庞大和成功,它也无法满足整个市场的各种需求。而市场细分,可以帮助企业找到适合自己特色,并使企业具有竞争力的分市场,将其作为自己的重点开发目标。通常,人们可以凭经验和专业知识来实现分类。而聚类分析(cluster analyses)作为一种定量方法,将从数据分析的角度,给出一个更准确、细致的分类工具。
简介:存贮论(或称为库存论)是定量方法和技术最早的领域之一,是研究存贮系统的性质、运行规律以及如何寻找最优存贮策略的一门学科,是运筹学的重要分支。存贮论的数学模型一般分成两类:一类是确定性模型,它不包含任何随机因素,另一类是带有随机因素的随机存贮模型。
简介:遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,不需要确定的规则就能自动获取和指导优化的搜索空间,自适应地调整搜索方向。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。
简介:禁忌搜索(Tabu Search,TS)是一种现代启发式算法,由美国科罗拉多大学教授Fred Glover在1986年左右提出的,是一个用来跳脱局部最优解的搜索方法。算法基于局部搜索算法改进而来,通过引入禁忌表来克服局部搜索算法容易陷入局部最优的缺点,具有全局寻优能力。
简介:人工神经网络(artificial neural network,以下简称 NN)有三个基本要素:
(i)一组连接(对应于生物神经元的突触),连接强度由各连接上的权值表示,权值为正表示激活,为负表示抑制。
(ii)一个求和单元,用于求取各输入信号的加权和(线性组合)。
(iii)一个非线性激活函数,起非线性映射作用并将神经元输出幅度限制在一定范围内(一般限制在 (0,1) 或(-1,1) 之间)。
简介:Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
简介:Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。